Question 6.30: Determine the voltage regulation by zero power factor method...

Determine the voltage regulation by zero power factor method of a 500 kVA , 6600 V, three-phase, star-connected alternator having a resistance of 0.075 ohm per phase, when delivering a current of 500 A at power factor (i) 0.8 lagging (ii) 0.707 leading and (iii) unity. The alternator has the following open circuit and full-load zero power factor curves:

\begin{array}{lccccccc}\text { Field current in A: } & 24 & 32 & 50 & 75 & 100 & 125 & 150 \\\text { Open circuit terminal voltage in } V: & 1400 & - & 4500 & 6400 & 7500 & 8100 & 8400 \\\text { Saturated curve, zero pf in } V: & 0 & 0 & 1900 & 4200 & 5750 & 6750 & 7100\end{array}
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The O C C and Z P F C are plotted as shown in Fig. 6.70 . At rated terminal voltage of \frac{6600}{\sqrt{3}} V, draw a horizontal line at B. Take B C=O A=32 A. This field current O A is the field current required to circulate full-load current on short circuit. Draw a line C D parallel to O G (the initial slope of O C C ) to meet O C C at D. From point D draw a perpendicular D F on the line B C. Here B C D is the Potier’s triangle. From Potier’s triangle, Field current required to overcome armature reaction on

\operatorname{load}=F B=26 A

 

\text { and } \quad F D=\frac{800}{\sqrt{3}}=462 V

 

\begin{array}{l}\text { Where } F D \text { represents voltage drop in leakage reactance at full-load current of } 500 A \text { (given) }\\\begin{array}{ll}\text { Now, } & I X_{L}=462 \\\therefore & X_{L}=\frac{462}{500}=0.924 \Omega\end{array}\end{array}

 

Draw the phasor diagram, as shown in Fig. 6.71, where,

 

O V=\text { terminal phase voltage, } V=\frac{6600}{\sqrt{3}}=3810 V

 

(i) When p f . \cos \phi=0.8  lagging; \sin \phi=\sin \cos ^{-1} 0.8=0.6

 

O E=E=\sqrt{(V \cos \phi+I R)^{2}+\left(V \sin \phi+1 X_{L}\right)^{2}}

 

=\sqrt{(3810 \times 0.8+500 \times 0.075)^{2}+(3510 \times 0.6+500 \times 0.924)^{2}}

 

=\sqrt{(3085)^{2}+(2748)^{2}}=4131 V

 

\text { From } O C C \text { , the field current corresponding to } 4131 V \text { (i.e., } \frac{7156}{\sqrt{3}} V \text { ) }

 

o a=I_{f_{1}}=92 A \text { (it leads vector } O E \text { by } 90^{\circ} \text { ) }

 

 

Field current corresponding to armature reaction

 

\left.a b=I_{f_{2}}=B F=23 A \quad \text { (it is parallel to load current } O I\right)

 

Total field current  I_{f}=O b=\sqrt{o a^{2}+a b^{2}-2 o a \times a b \times \cos \left(90^{\circ}+36.87^{\circ}\right)}

 

=\sqrt{(92)^{2}+(23)^{2}-2 \times 92 \times 23 \cos 126.87^{\circ}}

 

=\sqrt{8464+529+2539}=107.4 A

 

Corresponding to this field current of 107.4 A, the terminal voltage from O C C is 7700 V (line value)

 

E_{0} =\frac{7200}{\sqrt{3}}=4446 V \text { (phase value) }

 

\% \operatorname{Reg} =\frac{E_{0}-V}{V} \times 100=\frac{4446-3810}{3810} \times 100=16.69 \%

 

\text { (ii) When } p.f., \cos \phi_{1}=0.707 \text { leading; sin } \phi_{1}=\sin \cos ^{-1} 0.707=0.707 ;\phi_{1}=45^{\circ} \text { leading. }

 

\text { The phasor diagram is shown in Fig. } 6.72.

 

\begin{array}{c}O E^{\prime}=E^{\prime}=\sqrt{\left(V \cos \phi_{1}+I R\right)^{2}+\left(V \sin \phi_{2}-L X_{L}\right)^{2}} \\=\sqrt{(3810 \times 0.707+500 \times 0.075)^{2}+(3810 \times 0.707-500 \times 0.924)^{2}} \\=\sqrt{(2731)^{2}+(2232)^{2}}=3527 V\end{array}

 

\text { From } O C C \text { , the field current corresponding to } 3527 V \left(\text { i.e. } \frac{6109}{\sqrt{3}} V \right)

 

o a^{\prime}=I_{f_{1}}^{\prime}=72 A

 

Field current corresponding to armature reaction

 

a^{\prime} b^{\prime}=I_{f_{2}}^{\prime}=B E=23 A \text { (parallel to load current } O I^{\prime} \text { ) }

 

Total field current,

 

\begin{aligned}I_{f}^{\prime} &=o b^{\prime}=\sqrt{\left(o a^{\prime}\right)^{2}+\left(a^{\prime} b^{\prime}\right)^{2}-2 o a^{\prime} \times a^{\prime} b^{\prime} \times \cos \left(90^{\circ}-45^{\circ}\right)} \\&=\sqrt{(92)^{2}+(23)^{2}-2 \times 92 \times 23 \times \cos 45^{\circ}} \\&=\sqrt{(8464+529-1496}=86.6 A\end{aligned}

 

Corresponding to this field current of 86.6 A, the terminal voltage from O C C is \frac{5000}{\sqrt{3}}=2887 V

 

\% R_{e g}=\frac{B_{0}^{\prime}-V}{V} \times 100=\frac{2887-3810}{3810} \times 100

 

=24.23 \%

 

(iii) When p f, \cos \phi_{2}=1 ; \sin \phi_{2}=\sin \cos ^{-1} 1=0 ; \phi_{2}=0^{\circ}

 

Draw the phasor diagram as shown in Fig. 6.73.

 

O E^{\prime \prime} =E^{\prime \prime}=\sqrt{(V+I R)^{2}+\left(I X_{L}\right)^{2}}

 

=\sqrt{(3810+500 \times 0.075)^{2}+(500 \times 0.924)^{2}}

 

=\sqrt{(3847)^{2}+(462)^{2}}=3875 V

 

\text { From } O C C \text { , the field current corresponding to } 3875 V \left(\text { i.e. } \frac{6712}{\sqrt{3}} V \right)

 

o a^{\prime \prime}=I_{f_{1}}^{\prime \prime}=82 A

 

Field current corresponding to armature reaction

 

a^{\prime \prime} b^{\prime \prime}=I_{f_{2}}^{\prime \prime}=B F=23 A

 

(parallel to load current O I^{\prime \prime}  i.e., in phase with \left.O V\right)

 

Total field current,

 

I_{f}^{\prime \prime}=o b^{\prime \prime}=\sqrt{\left(o a^{\prime \prime}\right)^{2}+\left(a^{\prime \prime} b^{\prime \prime}\right)^{2}-2 o a^{\prime \prime} \times a^{\prime \prime} b^{\prime \prime} \times \cos (90 \pm 0)}

 

 

=\sqrt{(80)^{2}+(23)^{2}-0}=85.2 A

 

Corresponding to this current of 85.2 A, the terminal voltage from O C C is \frac{6750}{\sqrt{3}}=3897 V

 

\% \operatorname{Reg}=\frac{E_{0}^{\prime \prime}-V}{V} \times 100=\frac{3897-3810}{3810} \times 100=2.26 \%

 

6.30
6.30a
6.30aa
6.30aaa

Related Answered Questions