Determine whether B = \left [ \begin{matrix} 2 & i \\ i & 4 \end{matrix} \right ] is diagonalizable over \mathbb{C}.
Determine whether B = \left [ \begin{matrix} 2 & i \\ i & 4 \end{matrix} \right ] is diagonalizable over \mathbb{C}.
We have
C(\lambda) = det(B − \lambda I) = \left [ \begin{matrix} 2 – \lambda & i \\ i & 4 – \lambda \end{matrix} \right ] = \lambda ^2 − 6\lambda + 9 = (\lambda − 3)^2
So, the only distinct eigenvalue of B is \lambda_1 = 3 with algebraic multiplicity 2.
For \lambda_1 = 3,
B − \lambda_1 I = \left [ \begin{matrix} -1 & i \\ i & 1 \end{matrix} \right ] \sim \left [ \begin{matrix} 1 & -i \\ 0 & 0 \end{matrix} \right ]
Hence, the geometric multiplicity of \lambda_1 is 1. Therefore, B is not diagonalizable since the geometric multiplicity of \lambda_1 is less than its algebraic multiplicity.