Electrical heaters are used in contact heating (i.e., conduction heating) for various thermal processes. A common example is the fabric iron, rendered in Figures (a) and (b). A large fraction of the electrical power flowing into the iron, flows into the fabric. This is designated as Q_{s}. The contact area is A_{k} . Then the heat flux is q_{s} = Q_{s}/A_{k} . Consider a relatively thick fabric that is initially at T_{i} . Here thick indicates that we are interested in elapsed times such that the effect of heating at the surface (designated by x = 0) has not yet penetrated to the other side of the fabric.
The fabric has thermal diffusivity \left\langle \alpha \right\rangle =\left\langle k\right\rangle /\left\langle\rho c_{p}\right\rangle = 10^{−7} m^{2}/s , and \left\langle k\right\rangle = 0.2 W/m-K . The heat flux is q_{s} = −2 × 10^{4} W/m^{2} , and the initial temperature is T (t = 0) = 20^{\circ }C . The elapsed time is t = 30 s. The surface temperature may exceed the charring (or scorching) temperature of fabric Tc = 180^{\circ }C , and then permanent damage is caused to the fabric.
(a) Determine the surface temperature T_{s}(t) = T (x = 0, t = 30 s).
(b) Determine the temperature at location x = 3 mm from the surface, for this elapsed time, i.e., T (x = 3 mm, t = 30 s).