Question 1.1: Electron Interference. I have asserted that particles (elect...

Electron Interference. I have asserted that particles (electrons, for example) have a wave nature, encoded in \Psi . How might we check this, in the laboratory?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The classic signature of a wave phenomenon is interference: two waves in phase interfere constructively, and out of phase they interfere destructively. The wave nature of light was confirmed in 1801 by Young’s famous double-slit experiment, showing interference “fringes” on a distant screen when a monochromatic beam passes through two slits. If essentially the same experiment is done with electrons, the same pattern develops,^{10} confirming the wave nature of electrons. Now suppose we decrease the intensity of the electron beam, until only one electron is present in the apparatus at any particular time. According to the statistical interpretation each electron will produce a spot on the screen. Quantum mechanics cannot predict the precise location of that spot—all it can tell us is the probability of a given electron landing at a particular place. But if we are patient, and wait for a hundred thousand electrons—one at a time—to make the trip, the accumulating spots reveal the classic two-slit interference pattern (Figure 1.4).^{11} Of course, if you close off one slit, or somehow contrive to detect which slit each electron passes  through, the interference pattern disappears; the wave function of the emerging particle is now entirely different (in the first case because the boundary conditions for the Schrödinger equation have been changed, and in the second because of the collapse of the wave function upon measurement). But with both slits open, and no interruption of the electron in flight, each electron interferes with itself; it didn’t pass through one slit or the other, but through both at once, just as a water wave, impinging on a jetty with two openings, interferes with itself. There is nothing mysterious about this, once you have accepted the notion that particles obey a wave equation. The truly astonishing thing is the blip-by-blip assembly of the pattern. In any classical wave theory the pattern would develop smoothly and continuously, simply getting more intense as time goes on. The quantum process is more like the pointillist painting of Seurat: The picture emerges from the cumulative contributions of all the individual dots ^{12}

fig1.4

Related Answered Questions