According to the mathematical definition (4.76), the differential dU \Bigl(S(T,V),V\Bigr) is expressed as,
df \Bigl(x(y,z),y\Bigr) = \Biggl(\frac{\partial f\Bigl(x(y,z),y\Bigr) }{\partial x (y,z)}\frac{\partial x(y,z)}{\partial y} + \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial y } \Biggr) dy +\Biggl(\frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)}\frac{\partial x (y,z)}{\partial z} \Biggr) dz . (4.76)
dU \Bigl(S(T,V),V\Bigr) = \Biggl(\frac{\partial U\Bigl(S(T,V),V\Bigr) }{\partial S (T,V)}\frac{\partial S(T,V)}{\partial T} \Biggr) dT +\Biggl(\frac{\partial U \Bigl(S(T,V),V\Bigr) }{\partial S (S,V)}\frac{\partial S (T,V)}{\partial V} +\frac{\partial U \Bigl(S(T,V),V\Bigr) }{\partial V }\Biggr) dV .
Using the definitions (2.9), (2.10), (4.77) and the Maxwell relation (4.71), we obtain,
T (S, V, N_1, . . . , N_r) ≡ \frac {\partial U (S, V, N_1, . . . ,N_r) }{\partial S}. (2.9)
p (S, V, N_1, . . . , N_r) ≡ – \frac {\partial U (S, V, N_1, . . . ,N_r) }{\partial v}. (2.10)
\frac{\partial f}{\partial y}\mid _z ≡ \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)} \frac{\partial x(y,z)}{\partial y} + \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial y }.
\frac{\partial f}{\partial z}\mid _y ≡ \frac{\partial f \Bigl(x(y,z),y\Bigr) }{\partial x (y,z)} \frac{\partial x(y,z)}{\partial z} . (4.77)
\frac{\partial p}{\partial T} = \frac{\partial S}{\partial V}. (4.71)
dU \Bigl(S(T,V),V\Bigr) = \frac{\partial U}{\partial T}\mid _V dT + \Bigl(T \frac{\partial p (T,V)}{\partial T} – p (T,V)\Bigr) dV .
In the particular case of a gas that satisfies the relation p V = NR T, the terms inside the brackets cancel each other out and the differential reduces to,
dU \Bigl(S(T,V),V\Bigr) = \frac{\partial U}{\partial T}\mid _V dT .
which is indeed proportional to dT.