Estimate K_{f} and q for the steel shaft given in Ex. 6–6, p. 288.
Estimate K_{f} and q for the steel shaft given in Ex. 6–6, p. 288.
From Ex. 6–6, a steel shaft with S_{ut} = 690 Mpa and a shoulder with a fillet of 3 mm was found to have a theoretical stress-concentration-factor of K_{t}\dot{=}1.65. From Table 6–15,
Table 6–15 Heywood’s Parameter \sqrt {a} and coefficients of variation C_{Kf} for steels
Coefficient of Variation C_{Kf} | \sqrt{a}(\sqrt {mm}) ,S_{ut} in MPa | \sqrt{a}(\sqrt {in}) ,S_{ut} in kpsi | Notch Type |
0.10 | 174/S_{ut} | 5/S_{ut} | Transverse hole |
0.11 | 139/S_{ut} | 4/S_{ut} | Shoulder |
0.15 | 104/S_{ut} | 3/S_{ut} | Groove |
\sqrt {a} =\frac {139}{S_{ut}} =\frac {139}{690} = 0.2014\sqrt {mm}
From Eq. (6–78),
\overline {K}_{f} =\frac {K_{t}}{1 +\frac {2(K_{t} − 1)}{K_{t}} \frac {\sqrt {a}}{\sqrt {r}}} (6–78)
\overline {K}_{f} =\frac {K_{t}}{1 +\frac {2(K_{t} − 1)}{K_{t}} \frac {\sqrt {a}}{\sqrt {r}}}=\frac {1.65}{1 +\frac {2(1.65− 1)}{1.65} \frac {\sqrt {0.2014}}{\sqrt {3}}}=1.51
which is 2.5 percent lower than what was found in Ex. 6–6.
From Table 6–15, C_{Kf} = 0.11. Thus from Eq. (6–79),
K_{f} =\overline{ K}_{f} LN (1,C_{Kf}) (6–79)
K_{f}= 1.51 LN(1, 0.11)
From Eq. (6–77), with K_{t}= 1.65
\begin{aligned} \bar{q} &=\frac{\bar{K}_{f}-1}{K_{t}-1} \\ \hat{\sigma}_{q} &=\frac{C \bar{K}_{f}}{K_{t}-1} \\ C_{q} &=\frac{C \bar{K}_{f}}{\bar{K}_{f}-1} \end{aligned} (6-77)
\overline {q} =\frac {1.51 − 1}{1.65 − 1} = 0.785
C_{q} =\frac {C_{Kf} \overline{K}_{f}}{\overline{K}_{f}− 1} =\frac {0.11(1.51)}{1.51 − 1} = 0.326
\hat{σ}_{q} = C_{q} \overline {q} = 0.326(0.785) = 0.256
So,
q = LN(0.785, 0.256)