Estimate the change in \widehat{U} when this compound melts at atmospheric pressure.
Estimate the change in \widehat{U} when this compound melts at atmospheric pressure.
For Solids (1) and Liquids (2):
\mathrm{H}=\mathrm{U}+\mathrm{PV}
\mathrm{U}=\mathrm{H}-\mathrm{PV}
\Delta \mathrm{U}=\mathrm{U}_{2}-\mathrm{U}_{1}=\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \quad (Only valid for constant pressure)
Divide both sides by mass to get,
\Delta \widehat{\mathrm{U}}=\widehat{\mathrm{U}}_{2}-\widehat{\mathrm{U}}_{1}=\left(\widehat{\mathrm{H}}_{2}-\widehat{\mathrm{H}}_{1}\right)-\mathrm{P}\left(\widehat{\mathrm{V}}_{2}-\widehat{\mathrm{V}}_{1}\right)
Since the process is melting, \widehat{\mathrm{H}}_{2}-\widehat{\mathrm{H}}_{1} is \Delta \widehat{\mathrm{H}}^{\text {fus }}.
\Delta \widehat{\mathrm{U}}=\widehat{\mathrm{U}}_{2}-\widehat{\mathrm{U}}_{1}=\Delta \widehat{\mathrm{H}}^{\text {fus }}-\mathrm{P}\left(\widehat{\mathrm{V}}_{2, \text { liquid }}-\widehat{\mathrm{V}}_{1, \text { solid }}\right)
Plugging in given values, \widehat{\mathrm{V}}_{\text {solid } / \text { liquid }}=\frac{1}{\rho}
\Delta \widehat{\mathrm{U}}=\frac{75~ \mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-(1 \mathrm{~atm})\left(\frac{\mathrm{ft}^{3}}{30 \,\mathrm{lb}_{\mathrm{m}}}-\frac{\mathrm{ft}^{3}}{40 \,\mathrm{lb}_{\mathrm{m}}}\right)
Converting from \frac{\operatorname{atm} \mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} to \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}},
\begin{gathered}\Delta \widehat{\mathrm{U}}=\frac{75 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-\left(0.00833 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}\right)\left(\frac{\mathrm{m}}{3.28~ \mathrm{ft}}\right)^{3}\left(\frac{8.314 \frac{\mathrm{kJ}}{\mathrm{kmol}\, \mathrm{K}}}{8.314 \times 10^{-2} \frac{\mathrm{m}^{3} \mathrm{bar}}{\mathrm{kmol} \,\mathrm{K}}}\right)\left(\frac{1000 \mathrm{~J}}{\mathrm{~kJ}}\right)\left(\frac{9.48 \times 10^{-4} \mathrm{BTU}}{\mathrm{J}}\right)\\\Delta \widehat{\mathrm{U}}=\frac{75 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}-\frac{0.244 \,\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}=\mathbf{7 4 . 7 6} \frac{\mathbf{B T U}}{\mathbf{l b}_{\mathbf{m}}}\end{gathered}
Notice that the PV term is small and can often be neglected when we are dealing with liquids and solids. The PV term is not small for typical gases and vapors.