Question 11.1.1: Estimation of the Solubility of a Gas in a Liquid Estimate t...

Estimation of the Solubility of a Gas in a Liquid

Estimate the solubility and Henry’s law constant for carbon dioxide in a liquidmixture of toluene and carbon disulfide as a function of the CS _{2} mole fraction at 25°C and a partial pressure of CO _{2} of 1.013 bar.

Data: See Tables 6.6-1, 9.6-1, and 11.1-1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 11.1-5 provides the starting point for the solution of this problem. Since the partial pressure of carbon dioxide and the vapor pressures of toluene and carbon disulfide are so low, the total pressure must be low, and we can assume that

 

x_{1}=\frac{y_{1} P(f / P)_{1}}{\gamma_{1}(T, P, \underline{x}) f_{1}^{ L }(T, P=1.013 bar ) \exp \left[\underline{V}_{1}^{ L }(P-1.013 bar ) / R T\right]} (11.1-5a)

 

x_{1}^{ ID }=\frac{y_{1} P(f / P)_{1}}{f_{1}^{ L }(T, P=1.013 \text { bar }) \exp \left[\underline{V}_{1}^{ L }(P-1.013 \text { bar }) / R T\right]} (11.1-5b)

 

\left(\frac{f}{P}\right)=1 \quad \text { and } \quad \exp \left[\frac{\underline{V}_{ CO _{2}}^{ L }(P-1.013 bar )}{R T}\right]=1

 

Next, using the regular solution model for γ, we obtain

 

x_{ CO _{2}}=\frac{y_{ CO _{2}} P}{f_{ CO _{2}}^{ L }(T, P=1.013 bar ) \exp \left[\frac{\underline{V}^L_{ CO _{2}}\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}}{R T}\right]}

 

with

 

\bar{\delta}=\sum_{ j } \Phi_{ j } \delta_{ j }

 

The reduced temperature of CO _{2} \text { is } T_{ r }=298.15 K / 304.3 K =0.98, so from the Shair-Prausnitz correlation f^{ L } / P_{c} \approx 0.60 \text { and } f^{ L } \approx 0.60 \times 73.76 bar =44.26 bar. To calculate the activity coefficients we will assume that CO _{2} is only slightly soluble in the solvents, so that its volume fraction is small; we will then verify this assumption. Thus, as a first guess, the contribution of CO _{2} to δ will be neglected.

To compute the solubility of CO _{2} in pure carbon disulfide, we note that

 

\bar{\delta} \approx \delta_{ CS _{2}}=10( cal / cc )^{1 / 2} \quad \text { and } \quad\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}=16 cal / cc =66.94 J / cc

 

so that

 

\begin{aligned}x_{ CO _{2}} &=\frac{1.013 bar }{44.26 bar \times \exp \left\{\frac{55 cc / mol \times 66.94 J / cc }{8.314 J /( mol K ) \times 298.15 K }\right\}} \\&=5.18 \times 10^{-3}\end{aligned}

 

(The experimental value is x_{ CO _{2}}=3.28 \times 10^{-3}.) Also,

 

\begin{aligned}H=P / x_{ CO _{2}} &=1.013 \operatorname{bar} /\left(5.18 \times 10^{-3}\right) \\&=195.5 bar / \text { mole fraction }\end{aligned}

 

The solubility of CO _{2} in pure toluene is computed as follows:

 

\bar{\delta} \approx \delta_{ T }=8.9( cal / cc )^{1 / 2} \quad \text { and } \quad\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}=8.4 cal / cc =35.15 J / cc

 

so that

 

x_{ CO _{2}}=\frac{1.013 bar }{44.26 bar \times \exp \left\{\frac{55 \times 35.15}{8.314 \times 298.15}\right\}}=1.05 \times 10^{-2}

 

and

 

H = 96.6 bar/mole fraction

 

Finally, the solubility of CCO _{2} in a 50 mol % toluene, 50 mol % CS _{2} mixture is found from

 

\begin{aligned}\underline{V}_{\text {mix }}^{ L } &=x_{ CS _{2}} \underline{V}_{ CS _{2}}^{ L }+x_{ T } \underline{V}_{ T }^{ L } \\&=0.5 \times 61 \frac{ cc }{ mol }+0.5 \times 107 \frac{ cc }{ mol } \\&=84 \frac{ cc }{ mol }\end{aligned}

 

\Phi_{ CS _{2}}=\frac{0.5 \times 61}{84}=0.363, \quad \Phi_{ T }=\frac{0.5 \times 107}{84}=0.637

 

\begin{aligned}\bar{\delta} &=0.363 \times 10\left(\frac{ cal }{ cc }\right)^{1 / 2}+0.637 \times 8.9\left(\frac{ cal }{ cc }\right)^{1 / 2} \\&=9.30( cal / cc )^{1 / 2}\end{aligned}

 

and

 

(\delta-\bar{\delta})^{2}=10.88 cal / cc =45.55 J / cc

 

Thus

 

x_{ CO _{2}}=\frac{1.013}{44.26 \times \exp \left\{\frac{55 \times 45.52}{8.314 \times 298.15}\right\}}=8.33 \times 10^{-3}

 

and

 

H = 121.6 bar/mole fraction

 

These results are plotted in Fig. 11.1-2. In all cases x_{ CO _{2}} is small, as had initially been assumed, so that an iterative calculation is not necessary.

 

Table 11.1-1 “Liquid” Volumes and Solubility Parameters for Gaseous Solutes at 25°C
Gas \underline{V}^{ L }( cc / mol ) \delta( cal / cc )^{1 / 2}
N _{2} 32.4 2.58
CO 32.1 3.13
O _{2} 33 4
Ar 57.1 5.33
CH _{4} 52 5.68
CO _{2} 55 6
Kr 65 6.4
C _{2} H _{4} 65 6.6
C _{2} H _{6} 70 6.6
Cl _{2} 74 8.7
Source: This table originally appeared in J. M. Prausnitz and F. H. Shair, AIChE J., 7, 682 (1961). It appears here courtesy of the copyright owners, the American Institute of Chemical Engineers.

 

Table 6.6-1 The Critical and Other Constants for Selected Fluids
Substance Symbol Molecular Weight \left( g mol ^{-1}\right) T_{c}( K ) P_{c}( MPa ) V_{c}\left( m ^{3} / kmol \right) Z_{c} ω T_{\text {boil }}( K )
Acetylene C _{2} H _{2} 26.038 308.3 6.14 0.113 0.271 0.184 189.2
Ammonia NH _{3} 17.031 405.6 11.28 0.0724 0.242 0.25 239.7
Argon Ar 39.948 150.8 4.874 0.0749 0.291 -0.004 87.3
Benzene C _{6} H _{6} 78.114 562.1 4.894 0.259 0.271 0.212 353.3
n-Butane C _{4} H _{10} 58.124 425.2 3.8 0.255 0.274 0.193 272.7
Isobutane C _{4} H _{10} 58.124 408.1 3.648 0.263 0.283 0.176 261.3
1-Butene C _{4} H _{8} 56.108 419.6 4.023 0.24 0.277 0.187 266.9
Carbon dioxide CO _{2} 44.01 304.2 7.376 0.094 0.274 0.225 194.7
Carbon monoxide CO 28.01 132.9 3.496 0.0931 0.295 0.049 81.7
Carbon tetrachloride CCl _{4} 153.823 556.4 4.56 0.276 0.272 0.194 349.7
n-Decane C _{10} H _{22} 142.286 617.6 2.108 0.603 0.247 0.49 447.3
n-Dodecane C _{12} H _{26} 170.34 658.3 1.824 0.713 0.24 0.562 489.5
Ethane C _{2} H _{6} 30.07 305.4 4.884 0.148 0.285 0.098 184.5
Ethyl ether C _{4} H _{10} O 74.123 466.7 3.638 0.28 0.262 0.281 307.7
Ethylene C _{2} H _{4} 28.054 282.4 5.036 0.129 0.276 0.085 169.4
Helium He 4.003 5.19 0.227 0.0573 0.301 -0.387 4.21
n-Heptane C _{7} H _{16} 100.205 540.2 2.736 0.304 0.263 0.351 371.6
n-Hexane C _{6} H _{14} 86.178 507.4 2.969 0.37 0.26 0.296 341.9
Hydrogen H _{2} 2.016 33.2 1.297 0.065 0.305 -0.22 20.4
Hydrogen fluoride HF 20.006 461 6.488 0.069 0.12 0.372 292.7
Hydrogen sulfide H _{2} S 34.08 373.2 8.942 0.0985 0.284 0.1 212.8
Methane CH _{4} 16.043 190.6 4.6 0.099 0.288 0.008 111.7
Naphthalene C _{10} H _{8} 128.174 748.4 4.05 0.41 0.267 0.302 491.1
Neon Ne 20.183 44.4 2.756 0.0417 0.311 0 27
Nitric oxide NO 30.006 180 6.485 0.058 0.25 0.607 121.4
Nitrogen N _{2} 28.013 126.2 3.394 0.0895 0.29 0.04 77.4
n-Octane C _{8} H _{18} 114.232 568.8 2.482 0.492 0.259 0.394 398.8
Oxygen O _{2} 31.999 154.6 5.046 0.0732 0.288 0.021 90.2
n-Pentane C _{5} H _{12} 72.151 469.6 3.374 0.304 0.262 0.251 309.2
Isopentane C _{5} H _{12} 72.151 460.4 3.384 0.306 0.271 0.227 301
Propane C _{3} H _{8} 44.097 369.8 4.246 0.203 0.281 0.152 231.1
Propylene C _{3} H _{6} 42.081 365 4.62 0.181 0.275 0.148 225.4
Refrigerant R12 CCl _{2} F _{2} 120.914 385 4.124 0.217 0.28 0.176 243.4
Refrigerant HFC-134a CH _{2} FCF _{3} 102.03 374.23 4.06 0.198 0.258 0.332 247.1
Sulfur dioxide SO _{2} 64.063 430.8 7.883 0.122 0.268 0.251 263
Toluene C _{7} H _{8} 92.141 591.7 4.113 0.316 0.264 0.257 383.8
Water H _{2} O 18.015 647.3 22.048 0.056 0.229 0.344 373.2
Xenon Xe 131.3 289.7 5.836 0.118 0.286 0.002 165
Source: Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed.,McGraw-Hill, New York, 1986, Appendix A and other sources.

 

Table 9.6-1 Molar Liquid Volumes and Solubility Parameters of Some Nonpolar Liquids
\underline{V}^{ L }( cc / mol ) \delta( cal / cc )^{1 / 2}
Liquefied gases at 90 K
Nitrogen 38.1 5.3
Carbon monoxide 37.1 5.7
Argon 29 6.8
Oxygen 28 7.2
Methane 35.3 7.4
Carbon tetrafluoride 46 8.3
Ethane 45.7 9.5
Liquid solvents at 25°C
Perfluoro-n-heptane 226 6
Neopentane 122 6.2
Isopentane 117 6.8
n-Pentane 116 7.1
n-Hexane 132 7.3
1-Hexene 126 7.3
n-Octane 164 7.5
n-Hexadecane 294 8
Cyclohexane 109 8.2
Carbon tetrachloride 97 8.6
Ethyl benzene 123 8.8
Toluene 107 8.9
Benzene 89 9.2
Styrene 116 9.3
Tetrachloroethylene 103 9.3
Carbon disulfide 61 10
Bromine 51 11.5
Source: J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria. 1969. Reprinted with permission from Prentice-Hall, Englewood Cliffs, N.J.
Note: In regular solution theory the solubility parameter has traditionally been given in the units shown. For this reason the traditional units, rather than SI units, appear in this table.
11.1.1

Related Answered Questions