Equation 11.1-5 provides the starting point for the solution of this problem. Since the partial pressure of carbon dioxide and the vapor pressures of toluene and carbon disulfide are so low, the total pressure must be low, and we can assume that
x_{1}=\frac{y_{1} P(f / P)_{1}}{\gamma_{1}(T, P, \underline{x}) f_{1}^{ L }(T, P=1.013 bar ) \exp \left[\underline{V}_{1}^{ L }(P-1.013 bar ) / R T\right]} (11.1-5a)
x_{1}^{ ID }=\frac{y_{1} P(f / P)_{1}}{f_{1}^{ L }(T, P=1.013 \text { bar }) \exp \left[\underline{V}_{1}^{ L }(P-1.013 \text { bar }) / R T\right]} (11.1-5b)
\left(\frac{f}{P}\right)=1 \quad \text { and } \quad \exp \left[\frac{\underline{V}_{ CO _{2}}^{ L }(P-1.013 bar )}{R T}\right]=1
Next, using the regular solution model for γ, we obtain
x_{ CO _{2}}=\frac{y_{ CO _{2}} P}{f_{ CO _{2}}^{ L }(T, P=1.013 bar ) \exp \left[\frac{\underline{V}^L_{ CO _{2}}\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}}{R T}\right]}
with
\bar{\delta}=\sum_{ j } \Phi_{ j } \delta_{ j }
The reduced temperature of CO _{2} \text { is } T_{ r }=298.15 K / 304.3 K =0.98, so from the Shair-Prausnitz correlation f^{ L } / P_{c} \approx 0.60 \text { and } f^{ L } \approx 0.60 \times 73.76 bar =44.26 bar. To calculate the activity coefficients we will assume that CO _{2} is only slightly soluble in the solvents, so that its volume fraction is small; we will then verify this assumption. Thus, as a first guess, the contribution of CO _{2} to δ will be neglected.
To compute the solubility of CO _{2} in pure carbon disulfide, we note that
\bar{\delta} \approx \delta_{ CS _{2}}=10( cal / cc )^{1 / 2} \quad \text { and } \quad\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}=16 cal / cc =66.94 J / cc
so that
\begin{aligned}x_{ CO _{2}} &=\frac{1.013 bar }{44.26 bar \times \exp \left\{\frac{55 cc / mol \times 66.94 J / cc }{8.314 J /( mol K ) \times 298.15 K }\right\}} \\&=5.18 \times 10^{-3}\end{aligned}
(The experimental value is x_{ CO _{2}}=3.28 \times 10^{-3}.) Also,
\begin{aligned}H=P / x_{ CO _{2}} &=1.013 \operatorname{bar} /\left(5.18 \times 10^{-3}\right) \\&=195.5 bar / \text { mole fraction }\end{aligned}
The solubility of CO _{2} in pure toluene is computed as follows:
\bar{\delta} \approx \delta_{ T }=8.9( cal / cc )^{1 / 2} \quad \text { and } \quad\left(\delta_{ CO _{2}}-\bar{\delta}\right)^{2}=8.4 cal / cc =35.15 J / cc
so that
x_{ CO _{2}}=\frac{1.013 bar }{44.26 bar \times \exp \left\{\frac{55 \times 35.15}{8.314 \times 298.15}\right\}}=1.05 \times 10^{-2}
and
H = 96.6 bar/mole fraction
Finally, the solubility of CCO _{2} in a 50 mol % toluene, 50 mol % CS _{2} mixture is found from
\begin{aligned}\underline{V}_{\text {mix }}^{ L } &=x_{ CS _{2}} \underline{V}_{ CS _{2}}^{ L }+x_{ T } \underline{V}_{ T }^{ L } \\&=0.5 \times 61 \frac{ cc }{ mol }+0.5 \times 107 \frac{ cc }{ mol } \\&=84 \frac{ cc }{ mol }\end{aligned}
\Phi_{ CS _{2}}=\frac{0.5 \times 61}{84}=0.363, \quad \Phi_{ T }=\frac{0.5 \times 107}{84}=0.637
\begin{aligned}\bar{\delta} &=0.363 \times 10\left(\frac{ cal }{ cc }\right)^{1 / 2}+0.637 \times 8.9\left(\frac{ cal }{ cc }\right)^{1 / 2} \\&=9.30( cal / cc )^{1 / 2}\end{aligned}
and
(\delta-\bar{\delta})^{2}=10.88 cal / cc =45.55 J / cc
Thus
x_{ CO _{2}}=\frac{1.013}{44.26 \times \exp \left\{\frac{55 \times 45.52}{8.314 \times 298.15}\right\}}=8.33 \times 10^{-3}
and
H = 121.6 bar/mole fraction
These results are plotted in Fig. 11.1-2. In all cases x_{ CO _{2}} is small, as had initially been assumed, so that an iterative calculation is not necessary.
Table 11.1-1 “Liquid” Volumes and Solubility Parameters for Gaseous Solutes at 25°C |
Gas |
\underline{V}^{ L }( cc / mol ) |
\delta( cal / cc )^{1 / 2} |
N _{2} |
32.4 |
2.58 |
CO |
32.1 |
3.13 |
O _{2} |
33 |
4 |
Ar |
57.1 |
5.33 |
CH _{4} |
52 |
5.68 |
CO _{2} |
55 |
6 |
Kr |
65 |
6.4 |
C _{2} H _{4} |
65 |
6.6 |
C _{2} H _{6} |
70 |
6.6 |
Cl _{2} |
74 |
8.7 |
Source: This table originally appeared in J. M. Prausnitz and F. H. Shair, AIChE J., 7, 682 (1961). It appears here courtesy of the copyright owners, the American Institute of Chemical Engineers. |
Table 6.6-1 The Critical and Other Constants for Selected Fluids |
Substance |
Symbol |
Molecular Weight \left( g mol ^{-1}\right) |
T_{c}( K ) |
P_{c}( MPa ) |
V_{c}\left( m ^{3} / kmol \right) |
Z_{c} |
ω |
T_{\text {boil }}( K ) |
Acetylene |
C _{2} H _{2} |
26.038 |
308.3 |
6.14 |
0.113 |
0.271 |
0.184 |
189.2 |
Ammonia |
NH _{3} |
17.031 |
405.6 |
11.28 |
0.0724 |
0.242 |
0.25 |
239.7 |
Argon |
Ar |
39.948 |
150.8 |
4.874 |
0.0749 |
0.291 |
-0.004 |
87.3 |
Benzene |
C _{6} H _{6} |
78.114 |
562.1 |
4.894 |
0.259 |
0.271 |
0.212 |
353.3 |
n-Butane |
C _{4} H _{10} |
58.124 |
425.2 |
3.8 |
0.255 |
0.274 |
0.193 |
272.7 |
Isobutane |
C _{4} H _{10} |
58.124 |
408.1 |
3.648 |
0.263 |
0.283 |
0.176 |
261.3 |
1-Butene |
C _{4} H _{8} |
56.108 |
419.6 |
4.023 |
0.24 |
0.277 |
0.187 |
266.9 |
Carbon dioxide |
CO _{2} |
44.01 |
304.2 |
7.376 |
0.094 |
0.274 |
0.225 |
194.7 |
Carbon monoxide |
CO |
28.01 |
132.9 |
3.496 |
0.0931 |
0.295 |
0.049 |
81.7 |
Carbon tetrachloride |
CCl _{4} |
153.823 |
556.4 |
4.56 |
0.276 |
0.272 |
0.194 |
349.7 |
n-Decane |
C _{10} H _{22} |
142.286 |
617.6 |
2.108 |
0.603 |
0.247 |
0.49 |
447.3 |
n-Dodecane |
C _{12} H _{26} |
170.34 |
658.3 |
1.824 |
0.713 |
0.24 |
0.562 |
489.5 |
Ethane |
C _{2} H _{6} |
30.07 |
305.4 |
4.884 |
0.148 |
0.285 |
0.098 |
184.5 |
Ethyl ether |
C _{4} H _{10} O |
74.123 |
466.7 |
3.638 |
0.28 |
0.262 |
0.281 |
307.7 |
Ethylene |
C _{2} H _{4} |
28.054 |
282.4 |
5.036 |
0.129 |
0.276 |
0.085 |
169.4 |
Helium |
He |
4.003 |
5.19 |
0.227 |
0.0573 |
0.301 |
-0.387 |
4.21 |
n-Heptane |
C _{7} H _{16} |
100.205 |
540.2 |
2.736 |
0.304 |
0.263 |
0.351 |
371.6 |
n-Hexane |
C _{6} H _{14} |
86.178 |
507.4 |
2.969 |
0.37 |
0.26 |
0.296 |
341.9 |
Hydrogen |
H _{2} |
2.016 |
33.2 |
1.297 |
0.065 |
0.305 |
-0.22 |
20.4 |
Hydrogen fluoride |
HF |
20.006 |
461 |
6.488 |
0.069 |
0.12 |
0.372 |
292.7 |
Hydrogen sulfide |
H _{2} S |
34.08 |
373.2 |
8.942 |
0.0985 |
0.284 |
0.1 |
212.8 |
Methane |
CH _{4} |
16.043 |
190.6 |
4.6 |
0.099 |
0.288 |
0.008 |
111.7 |
Naphthalene |
C _{10} H _{8} |
128.174 |
748.4 |
4.05 |
0.41 |
0.267 |
0.302 |
491.1 |
Neon |
Ne |
20.183 |
44.4 |
2.756 |
0.0417 |
0.311 |
0 |
27 |
Nitric oxide |
NO |
30.006 |
180 |
6.485 |
0.058 |
0.25 |
0.607 |
121.4 |
Nitrogen |
N _{2} |
28.013 |
126.2 |
3.394 |
0.0895 |
0.29 |
0.04 |
77.4 |
n-Octane |
C _{8} H _{18} |
114.232 |
568.8 |
2.482 |
0.492 |
0.259 |
0.394 |
398.8 |
Oxygen |
O _{2} |
31.999 |
154.6 |
5.046 |
0.0732 |
0.288 |
0.021 |
90.2 |
n-Pentane |
C _{5} H _{12} |
72.151 |
469.6 |
3.374 |
0.304 |
0.262 |
0.251 |
309.2 |
Isopentane |
C _{5} H _{12} |
72.151 |
460.4 |
3.384 |
0.306 |
0.271 |
0.227 |
301 |
Propane |
C _{3} H _{8} |
44.097 |
369.8 |
4.246 |
0.203 |
0.281 |
0.152 |
231.1 |
Propylene |
C _{3} H _{6} |
42.081 |
365 |
4.62 |
0.181 |
0.275 |
0.148 |
225.4 |
Refrigerant R12 |
CCl _{2} F _{2} |
120.914 |
385 |
4.124 |
0.217 |
0.28 |
0.176 |
243.4 |
Refrigerant HFC-134a |
CH _{2} FCF _{3} |
102.03 |
374.23 |
4.06 |
0.198 |
0.258 |
0.332 |
247.1 |
Sulfur dioxide |
SO _{2} |
64.063 |
430.8 |
7.883 |
0.122 |
0.268 |
0.251 |
263 |
Toluene |
C _{7} H _{8} |
92.141 |
591.7 |
4.113 |
0.316 |
0.264 |
0.257 |
383.8 |
Water |
H _{2} O |
18.015 |
647.3 |
22.048 |
0.056 |
0.229 |
0.344 |
373.2 |
Xenon |
Xe |
131.3 |
289.7 |
5.836 |
0.118 |
0.286 |
0.002 |
165 |
Source: Adapted from R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed.,McGraw-Hill, New York, 1986, Appendix A and other sources. |
Table 9.6-1 Molar Liquid Volumes and Solubility Parameters of Some Nonpolar Liquids |
|
\underline{V}^{ L }( cc / mol ) |
\delta( cal / cc )^{1 / 2} |
Liquefied gases at 90 K |
Nitrogen |
38.1 |
5.3 |
Carbon monoxide |
37.1 |
5.7 |
Argon |
29 |
6.8 |
Oxygen |
28 |
7.2 |
Methane |
35.3 |
7.4 |
Carbon tetrafluoride |
46 |
8.3 |
Ethane |
45.7 |
9.5 |
Liquid solvents at 25°C |
Perfluoro-n-heptane |
226 |
6 |
Neopentane |
122 |
6.2 |
Isopentane |
117 |
6.8 |
n-Pentane |
116 |
7.1 |
n-Hexane |
132 |
7.3 |
1-Hexene |
126 |
7.3 |
n-Octane |
164 |
7.5 |
n-Hexadecane |
294 |
8 |
Cyclohexane |
109 |
8.2 |
Carbon tetrachloride |
97 |
8.6 |
Ethyl benzene |
123 |
8.8 |
Toluene |
107 |
8.9 |
Benzene |
89 |
9.2 |
Styrene |
116 |
9.3 |
Tetrachloroethylene |
103 |
9.3 |
Carbon disulfide |
61 |
10 |
Bromine |
51 |
11.5 |
Source: J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria. 1969. Reprinted with permission from Prentice-Hall, Englewood Cliffs, N.J.
Note: In regular solution theory the solubility parameter has traditionally been given in the units shown. For this reason the traditional units, rather than SI units, appear in this table. |