Question 5.6.1: Evaluate ∭π xy cos yz dV, where π is the parallelepiped {(x,...

Evaluate πxycosyz dV\iiint_{\pi} x y \cos y z  d V, where π\pi is the parallelepiped {(x,y,z):0x1,0y1,0zπ2}\left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq \frac{\pi}{2}\right\}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
πxycosyz dV=01010π/2xycosyz dz dy dx=0101{xy1ysinyz0π/2}dy dx=0101xsin(π2y)dy dx=01{2πxcosπ2y01}dx=012πx dx=x2π01=1π.\begin{aligned}\iiint_{\pi} x y \cos y z  d V &=\int_{0}^{1} \int_{0}^{1} \int_{0}^{\pi / 2} x y \cos y z  d z  d y  d x \\&=\int_{0}^{1} \int_{0}^{1}\left\{\left.x y \cdot \frac{1}{y} \sin y z\right|_{0} ^{\pi / 2}\right\} d y  d x=\int_{0}^{1} \int_{0}^{1} x \sin \left(\frac{\pi}{2} y\right) d y  d x \\&=\int_{0}^{1}\left\{-\left.\frac{2}{\pi} x \cos \frac{\pi}{2} y\right|_{0} ^{1}\right\} d x=\int_{0}^{1} \frac{2}{\pi} x  d x=\left.\frac{x^{2}}{\pi}\right|_{0} ^{1}=\frac{1}{\pi} .\end{aligned}

Related Answered Questions

We have already found that \mu=\frac{47}{84...
\begin{aligned}V &=\int_{0}^{1} \int_{x...