Explain why the dot product of x and y equals the dot product of Px and Py. Then from (Px)^{T} (Py) = {x}^{T}y deduce that {P}^{T}P = I for any permutation. With x = (1,2,3) and y = (1,4,2) choose P to show that Px • y is not always x • Py.
Explain why the dot product of x and y equals the dot product of Px and Py. Then from (Px)^{T} (Py) = {x}^{T}y deduce that {P}^{T}P = I for any permutation. With x = (1,2,3) and y = (1,4,2) choose P to show that Px • y is not always x • Py.
(Px)^{T} (Py) = {x}^{T}{P}^{T}Py ={x}^{T}y since {P}^{T}P = I.
In general
Px • y=x • {P}^{T}y \neq x • Py:
Non-equality where P \neq {P}^{T}:
\left[ \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{matrix} \right] \left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] \cdot \left[ \begin{matrix} 1 \\ 1 \\ 2 \end{matrix} \right] \neq \left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] \cdot \left[ \begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{matrix} \right] \left[ \begin{matrix} 1 \\ 1 \\ 2 \end{matrix} \right].