Question 20.2: Fig. Ex. 20.2 shows a free standing cantilever sheet pile wi...

Fig. Ex. 20.2 shows a free standing cantilever sheet pile with no backfill driven into homogeneous sand. The following data are available:

H = 20 ft, P = 3000 Ib/ft of wall, \gamma=115 lb / ft ^{3}, \phi=36^{\circ}.

Determine: (a) the depth of penetration, D, and (b) the maximum bending moment M_{\max }.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}&K_{p}=\tan ^{2} 45^{\circ}+\frac{\phi}{2}=\tan ^{2} 45^{\circ}+\frac{36}{2}=3.85 \\&K_{A}=\frac{1}{K_{p}}=\frac{1}{3.85}=0.26 \\&K=K_{p}- K _{ A }=3.85-0.26=3.59\end{aligned}

 

The equation for D is (Eq 20.11)

 

D^{4}+C_{1} D^{2}+C_{2} D+C_{3}=0 (20.11)

 

D^{4}+C_{1} D^{2}+C_{2} D+C_{3}=0

 

where C_{1}=-\frac{8 P}{\gamma K}=-\frac{8 \times 3000}{115 \times 3.59}=-58.133

 

C_{2}=-\frac{12 P H}{\gamma K}=-\frac{12 \times 3000 \times 20}{115 \times 3.59}=-1744

 

C_{3}=-\frac{4 P^{2}}{(\gamma K)^{2}}=-\frac{4 \times 3000^{2}}{(115 \times 3.59)^{2}}=-211.2

 

Substituting and simplifying, we have

 

D^{4}-58.133 D^{2}-1744 D-211.2=0

 

From the above equation D =13.5 ft.

From Eq. (20.6)

 

\bar{y}_{0}=\sqrt{\frac{2 P_{a}}{\gamma K}} (20.6)

 

\bar{y}_{0}=\sqrt{\frac{2 P_{a}}{\gamma K}}=\sqrt{\frac{2 P}{\gamma K}}=\sqrt{\frac{2 \times 3000}{115 \times 3.59}}=3.81 ft

 

FromEq. (20.12)

 

M_{\max }=P\left(H+\bar{y}_{o}\right)-\frac{\gamma \bar{y}_{o}^{3} K}{6} (20.12)

 

\begin{aligned}&M_{\max }=P_{a}\left(H+\bar{y}_{0}\right)-\frac{\gamma \bar{y}_{0}^{3} K}{6} \\&=3000(20+3.81)-\frac{115 \times(3.81)^{3} \times 3.59}{6} \\&=71,430-3,806=67,624 lb – ft / ft \text { of wall } \\&M_{\max }=67,624 lb – ft / ft \text { of wall }\end{aligned}

Related Answered Questions

Refer to Fig. Ex. 20.8 The following equations may...