Fig. Example 12.6 gives a freestanding sheet pile penetrating clay. Determine the depth of penetration. Given: H = 5 m, P = 40 kN/m, and q_{u}=30 kN / m ^{2}.
Fig. Example 12.6 gives a freestanding sheet pile penetrating clay. Determine the depth of penetration. Given: H = 5 m, P = 40 kN/m, and q_{u}=30 kN / m ^{2}.
FromEq. (20.13a)
\phi=0 \quad \bar{p}_{a}=\gamma H-2 c=\gamma H-q_{u} (20.13a)
From Eq. (20.28), The expression for D is
C_{1} D^{2}+C_{2} D+C_{3}=0 (20.28)
C_{1} D^{2}+C_{2} D+C_{3}=0
where \begin{aligned}&C_{1}=2 q_{u}=60 \\&C_{2}=-2 P=-2 \times 40=-80 \\&C_{3}=-\frac{\left(P+6 q_{u} H\right) P}{q_{u}}=-\frac{(40+6 \times 30 \times 5) 40}{30}=-1253\end{aligned}
Substituting and simplifying
60 D^{2}-80 D-1253=0or D^{2}-1.33 D-21=0
Solving D \approx 5.3 m. Increasing by 40% we have
D (design) = 1.4(5.3) = 7.42 m
From Eq. (20.29)
h=\frac{2 q_{u} D-P}{2 q_{u}} (20.29)
h=\frac{2 q_{u} D-P}{2 q_{u}}=\frac{2 \times 30 \times 5.3 m -40}{2 \times 30}=4.63 m