Question 10.17: Figure 10.19 illustrates the variation of the drag coefficie...

Figure 10.19 illustrates the variation of the drag coefficient, C_{D} for blunt (square shape) and streamlined (elliptical) 2-D bodies, for subsonic flow (M = v/c < 1), where compressibility effects are insignificant if M ≤ 0.5, while they are significant for M > 0.5. Consider a 1500-ft-long square-shaped cylinder with a side of 6 ft. Assume air at standard atmosphere at an altitude of 25,000 ft above sea level flows over the cylinder, as illustrated in Figure EP 10.17. (a) Determine the drag coefficient and the drag force if the velocity of flow over the cylinder is 400 ft/sec. (b) Determine the drag coefficient and the drag force if the velocity of flow over the cylinder is 800 ft/sec.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)–(b) The frontal area is used to compute the drag force for the square cylinder, and the drag force is determined by applying Equation 10.12 F_{D} = C_{D} \frac{1}{2} \rho v^{2}A . The fluid properties for air at standard atmosphere at an altitude of 25,000ft above sea level is given in Table A.1 in Appendix A.
(a) The drag coefficient and the drag force for a velocity of flow over the cylinder of 400 ft/sec are determined as follows:

slug: = 1 lb \frac{sec^{2}}{ft}                               L: = 1500 ft                               D: = 6 ft                               A_{front}: = L.D = 9 \times 10^{3} ft^{2}

\rho : = 0.0010663 \frac{slug}{ft^{3}}                               c: = 1016.11 \frac{ft}{sec}                               E_{V}: = C^{2}. \rho = 1.101 \times 10^{3} \frac{lb}{ft^{2}}

V: = 400 \frac{ft}{sec}                                       M: = \frac{V}{\sqrt{\frac{E_{V}}{\rho } } } = 0.394                               C_{D}: = 2

Guess value:                              F_{D}: = 1 lb

Given

F_{D} = C_{D} \frac{1}{2} \rho.V^{2} . A_{front}
F_{D}: = Find (F_{D}) = 1.535 \times 10^{6} lb

(b) The drag coefficient and the drag force for a velocity of flow over the cylinder of 800 ft/sec are determined as follows:

V: = 800 \frac{ft}{sec}                               M: = \frac{V}{\sqrt{\frac{E_{V}}{\rho } } } = 0.787                               C_{D}: = 2.1

Guess value:                              F_{D}: = 1 lb

Given

F_{D} = C_{D} \frac{1}{2} \rho.V^{2} . A_{front}
F_{D}: = Find (F_{D}) = 6.449 \times 10^{6} lb

Therefore, although the drag coefficient, C_{D} increases (from 2 to 2.1) with an increase in the velocity, v (from 400 ft/sec to 800 ft/sec) and thus an increase in the Mach number, M (from 0.384 to 0.787), the drag force, F_{D} increases (from 1.535 \times 10^{10} lb to 6.449 \times 10^{11} lb) with an increase in velocity, as F_{D} is directly proportional to V^{2} .

 

Table A.1
Physical Properties for the International Civil Aviation Organization (ICAO) Standard Atmosphere as a Function of Elevation above Sea Level
Elevation
above Sea
Level
ft
Temperature (θ)
^{\circ } F
Absolute
Pressure (p)
psia
Density \left(\rho \right)
slug/ft^{3}
Specific
Weight \left(\gamma \right)
lb/ft^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} lb – sec/ft^{2}
Kinematic
Viscosity (ν)
10^{-3} ft^{2}/sec
Speed of
Sound (c)
ft/sec
Acceleration
due to
Gravity (g)
ft/sec^{2}
0 59.000 14.69590 0.002376800 0.0764720 0.37372 0.15724 1116.45 32.174
5000 41.173 12.22830 0.002048100 0.0658640 0.36366 0.17756 1097.08 32.158
10.000 23.355 10.10830 0.001755500 0.0564240 0.35343 0.20133 1077.40 32.142
15.000 5.545 8.29700 0.001496100 0.0480680 0.34302 0.22928 1057.35 32.129
20.000 -12.255 6.75880 0.001267200 0.0406940 0.33244 0.26234 1039.94 32.113
25.000 -30.048 5.46070 0.001066300 0.0342240 0.32166 0.30167 1016.11 32.097
30.000 -47.048 4.37260 0.000890650 0.0285730 0.31069 0.34884 994.85 32.081
35.000 -65.607 3.46760 0.000738190 0.0236720 0.29952 0.40575 973.13 32.068
40.000 -69.700 2.73000 0.000587260 0.0188230 0.29691 0.50559 968.08 32.052
45.000 -69.700 2.14890 0.000462270 0.0148090 0.29691 0.64230 968.08 32.036
50.000 -69.700 1.69170 0.000363910 0.0116520 0.29691 0.81589 968.08 32.020
60.000 -69.700 1.04880 0.000225610 0.0072175 0.29691 1.31600 968.08 31.991
70.000 -67.425 0.65087 0.000139200 0.0044485 0.29836 2.14340 970.90 31.958
80.000 -61.976 0.40632 0.000085707 0.0027366 0.30182 3.52150 997.62 31.930
90.000 -56.535 0.25540 0.000053145 0.0016950 0.30525 5.74360 984.28 31.897
100.000 -51.099 0.16160 0.000033182 0.0010575 0.30865 9.30180 990.91 31.868
Elevation
above Sea
Level
Km
Temperature (θ)
^{\circ } C
Absolute
Pressure (p)
kPa abs
Density \left(\rho \right)
kg/m^{3}
Specific
Weight \left(\gamma \right)
N/m^{3}
Absolute
(Dynamic)
Viscosity \left(\mu  \right)
10^{-6} N – sec/m^{2}
Kinematic
Viscosity (ν)
10^{-6} m^{2}/sec
Speed of
Sound (c)
m/sec
Acceleration
due to
Gravity (g)
m/sec^{2}
0 15.000 101.325 1.22500 12.0131 17.894 14.607 340.294 9.80665
1 8.501 89.876 1.11170 10.8987 17.579 15.813 336.430 9.80360
2 2.004 79.501 1.00660 9.8652 17.260 17.147 332.530 9.80050
3 -4.500 70.121 0.90925 8.9083 16.938 18.628 328.580 9.78740
4 -10.984 61.66 0.81935 8.0250 16.612 20.275 324.590 9.79430
5 -17.474 54.048 0.73643 7.2105 16.282 22.110 320.550 9.79120
6 -23.693 47.217 0.66011 6.4613 15.949 24.161 316.450 9.78820
8 -36.935 35.651 0.52579 5.1433 15.271 29.044 308.110 9.78000
10 -49.898 26.499 0.41351 4.0424 14.577 35.251 299.530 9.77590
12 -56.500 19.399 0.31194 3.0476 14.216 45.574 295.070 9.76970
14 -56.500 14.17 0.22786 2.2247 14.216 62.391 295.070 9.76360
16 -56.500 10.352 0.16647 1.6243 14.216 85.397 295.070 9.75750
18 -56.500 7.565 0.12165 1.1862 14.216 116.860 295.070 9.75130
20 -56.500 5.529 0.08891 0.8664 14.216 159.890 295.070 9.74520
25 -51.598 2.549 0.04008 0.3900 14.484 361.350 298.390 9.73000
30 -46.641 1.197 0.01841 0.1788 14.753 801.340 301.710 9.71470

Related Answered Questions