Since the laminate is symmetric and isotropic the elastic constants for each ply are
E_{l}=E_{t}=E=70000 N / mm ^{2}
ν_{l t}=ν_{t l}=ν=0.3
Also, for an isotropic laminate (see Eq. (1.50))
\gamma=\frac{2(1+ν)}{E} \tau (1.50)
G_{l t}=E / 2(1+ ν)=70000 / 2(1+0.3)=26923 N / mm ^{2}
For an isotropic ply, which is a special case of an orthotropic ply, the reduced stiffness terms k_{13} and k_{23} in Eq. (24.31) are zero. Also, from Eq. (24.17)
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right.&m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&m^{3}n\left(k_{11}-k_{12}-2k_{33}\right)\\\left.+4k_{33}\right)+n^{4}k_{22}&+\left(m^{4}+n^{4}\right)k_{12}&+mn^{3}\left(k_{12}-k_{22}+2k_{33}\right)\\m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&n^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right. & m n^{3}\left(k_{11}-k_{12}-2 k_{33}\right)\\+\left(m^{4}+n^{4}\right)k_{12}&\left.+4k_{33}\right)+m^{4} k_{22} & +m^{3} n\left(k_{12}-k_{22}+2 k_{33}\right)\\m^{3} n\left(k_{11}-k_{12}-2k_{33}\right)&mn^{3}\left(k_{11}-k_{12}-2 k_{33}\right)&m^{2}n^{2}\left(k_{11}+k_{22}-2k_{12}\right. \\+m n^{3}\left(k_{12}+k_{22}+2 k_{33}\right) & +m^{3} n\left(k_{12}-k_{22}+2k_{33}\right)&\left.-2k_{33}\right)+\left(m^{4}+n^{4}\right) k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\} (24.31)
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_{l}}{1-ν_{l t} ν_{t 1}} & \frac{ν_{t l} E_{l}}{1-ν_{l t} ν_{t l}} &0\\\frac{ν_{l t} E_{t}}{1-ν_{l t} ν_{t l}} & \frac{E_{t}}{1-ν_{l t}ν_{t l}} & 0 \\0 & 0 & G_{1 t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{l}\\\varepsilon_{t} \\\gamma_{l t}\end{array}\right\} (24.17)
k_{11}=E /\left(1- ν ^{2}\right)=70000 /\left(1-0.3^{2}\right)=76923 N / mm ^{2}
k_{12}=ν E /\left(1-ν^{2}\right)=0.3 \times 70000\left(1-0.3^{2}\right)=23077 N / mm ^{2}
k_{22}=E /\left(1-ν^{2}\right)=76923 N / mm ^{2}
k_{33}=G=26923 N / mm ^{2}
For an isotropic ply there is no ply angle so that in effect, \theta=0^{\circ} and in Eq. (24.38)
\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{lll}\bar{k}_{11}&\bar{k}_{12}&\bar{k}_{13}\\\bar{k}_{12}&\bar{k}_{22}&\bar{k}_{23}\\\bar{k}_{13}&\bar{k}_{23} &\bar{k}_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y}\\\gamma_{xy}\end{array}\right\} (24.38)
\bar{k}_{11}=k_{11}, \quad \bar{k}_{12}=k_{12}, \quad \bar{k}_{22}=k_{22}
From Eq. (24.45) etc. and since there are four identical plies each 0.15 mm thick
A_{11}=\sum_{p=1}^{N}\left(z_{p}-z_{p-1}\right) \bar{k}_{11} (24.45)
A_{11}=4 \times 0.15 \times 76923=46154 N / mm
A_{12}=4 \times 0.15 \times 23077=13846 N / mm
A_{22}=4 \times 0.15 \times 76923=46154 N / mm
A_{33}=4 \times 0.15 \times 26923=16154 N / mm
Then, from Eqs. (24.55) the values of the terms in the inverse of the [A] matrix are
a_{11}=\left(A_{22}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)
a_{22}=\left(A_{11}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)
a_{33}=1 / A_{33}
a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right) (24.55)
a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)
a_{13}=0
a_{23}=0
a_{11}=46154 /\left(46154 \times 46154-13846^{2}\right)=23.8 \times 10^{-6}
a_{22}=23.8 \times 10^{-6}
Similarly a_{33}=61.9 \times 10^{-6}
a_{12}=-7.1 \times 10^{-6}
From Eq. (24.56) the equivalent Young’s modulus is given by
E_{x}=\frac{1}{t a_{11}} (24.56)
E_{x}=\frac{1}{4 \times 0.15 \times 23.8 \times 10^{-6}}=70000 N / mm ^{2}
and from Eq. (24.57) Poisson’s ratio is
ν_{x y}=\frac{-\varepsilon_{y}}{\varepsilon_{x}}=\frac{-a_{12}}{a_{11}} (24.57)
ν_{x y}=\frac{-\left(-7.1 \times 10^{-6}\right)}{23.8 \times 10^{-6}}=0.3
Lastly, from Eq. (24.62)
\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{t a_{33}}=G_{x y} (24.62)
G_{x y}=\frac{1}{4 \times 0.15 \times 61.9 \times 10^{-6}}=26923 N / mm ^{2}
The shear coupling coefficient, m_{x} is, from Eq. (24.58), zero. Note that the equivalent elastic constants are identical in value to the given elastic constants for the ply. This could have been deduced initially since, for an isotropic ply, the elastic constants are independent of laminate thickness. However, the example serves to illustrate the method.
\frac{\gamma_{x y}}{\varepsilon_{x}}=\frac{a_{13}}{a_{11}}=-m_{x} (24.58)