Question 24.8: Figure 24.13 shows the cross-section in the xz plane of a sy...

Figure 24.13 shows the cross-section in the xz plane of a symmetric laminate comprising four plies which are singly orientated and isotropic; all the plies have the same thickness of 0.15 mm. If Young’s modulus for the plies is 70000 N / mm ^{2} and Poisson’s ratio is 0.3 calculate the equivalent elastic constants of the laminate for the case of in-plane loading.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since the laminate is symmetric and isotropic the elastic constants for each ply are

 

E_{l}=E_{t}=E=70000 N / mm ^{2}

 

ν_{l t}=ν_{t l}=ν=0.3

 

Also, for an isotropic laminate (see Eq. (1.50))

 

\gamma=\frac{2(1+ν)}{E} \tau  (1.50)

 

G_{l t}=E / 2(1+ ν)=70000 / 2(1+0.3)=26923 N / mm ^{2}

 

For an isotropic ply, which is a special case of an orthotropic ply, the reduced stiffness terms k_{13} and k_{23} in Eq. (24.31) are zero. Also, from Eq. (24.17)

 

\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}m^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right.&m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&m^{3}n\left(k_{11}-k_{12}-2k_{33}\right)\\\left.+4k_{33}\right)+n^{4}k_{22}&+\left(m^{4}+n^{4}\right)k_{12}&+mn^{3}\left(k_{12}-k_{22}+2k_{33}\right)\\m^{2}n^{2}\left(k_{11}+k_{22}-4k_{33}\right)&n^{4}k_{11}+m^{2}n^{2}\left(2k_{12}\right. & m n^{3}\left(k_{11}-k_{12}-2 k_{33}\right)\\+\left(m^{4}+n^{4}\right)k_{12}&\left.+4k_{33}\right)+m^{4} k_{22} & +m^{3} n\left(k_{12}-k_{22}+2 k_{33}\right)\\m^{3} n\left(k_{11}-k_{12}-2k_{33}\right)&mn^{3}\left(k_{11}-k_{12}-2 k_{33}\right)&m^{2}n^{2}\left(k_{11}+k_{22}-2k_{12}\right. \\+m n^{3}\left(k_{12}+k_{22}+2 k_{33}\right) & +m^{3} n\left(k_{12}-k_{22}+2k_{33}\right)&\left.-2k_{33}\right)+\left(m^{4}+n^{4}\right) k_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y} \\\gamma_{x y}\end{array}\right\}  (24.31)

 

\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{ccc}\frac{E_{l}}{1-ν_{l t} ν_{t 1}} & \frac{ν_{t l} E_{l}}{1-ν_{l t} ν_{t l}} &0\\\frac{ν_{l t} E_{t}}{1-ν_{l t} ν_{t l}} & \frac{E_{t}}{1-ν_{l t}ν_{t l}} & 0 \\0 & 0 & G_{1 t}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{l}\\\varepsilon_{t} \\\gamma_{l t}\end{array}\right\}  (24.17)

 

k_{11}=E /\left(1- ν ^{2}\right)=70000 /\left(1-0.3^{2}\right)=76923 N / mm ^{2}

 

k_{12}=ν E /\left(1-ν^{2}\right)=0.3 \times 70000\left(1-0.3^{2}\right)=23077 N / mm ^{2}

 

k_{22}=E /\left(1-ν^{2}\right)=76923 N / mm ^{2}

 

k_{33}=G=26923 N / mm ^{2}

 

For an isotropic ply there is no ply angle so that in effect, \theta=0^{\circ} and in Eq. (24.38)

 

\left\{\begin{array}{c}\sigma_{x} \\\sigma_{y} \\\tau_{x y}\end{array}\right\}=\left[\begin{array}{lll}\bar{k}_{11}&\bar{k}_{12}&\bar{k}_{13}\\\bar{k}_{12}&\bar{k}_{22}&\bar{k}_{23}\\\bar{k}_{13}&\bar{k}_{23} &\bar{k}_{33}\end{array}\right]\left\{\begin{array}{c}\varepsilon_{x}\\\varepsilon_{y}\\\gamma_{xy}\end{array}\right\}  (24.38)

 

\bar{k}_{11}=k_{11}, \quad \bar{k}_{12}=k_{12}, \quad \bar{k}_{22}=k_{22}

 

From Eq. (24.45) etc. and since there are four identical plies each 0.15 mm thick

 

A_{11}=\sum_{p=1}^{N}\left(z_{p}-z_{p-1}\right) \bar{k}_{11}  (24.45)

 

A_{11}=4 \times 0.15 \times 76923=46154 N / mm

 

A_{12}=4 \times 0.15 \times 23077=13846 N / mm

 

A_{22}=4 \times 0.15 \times 76923=46154 N / mm

 

A_{33}=4 \times 0.15 \times 26923=16154 N / mm

 

Then, from Eqs. (24.55) the values of the terms in the inverse of the [A] matrix are

 

a_{11}=\left(A_{22}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)

 

a_{22}=\left(A_{11}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)

 

a_{33}=1 / A_{33}

 

a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)  (24.55)

 

a_{12}=-\left(A_{12}\right) /\left(A_{11} A_{22}-A_{12}^{2}\right)

 

a_{13}=0

 

a_{23}=0

 

a_{11}=46154 /\left(46154 \times 46154-13846^{2}\right)=23.8 \times 10^{-6}

 

a_{22}=23.8 \times 10^{-6}

 

Similarly  a_{33}=61.9 \times 10^{-6}

 

a_{12}=-7.1 \times 10^{-6}

 

From Eq. (24.56) the equivalent Young’s modulus is given by

 

E_{x}=\frac{1}{t a_{11}}  (24.56)

 

E_{x}=\frac{1}{4 \times 0.15 \times 23.8 \times 10^{-6}}=70000 N / mm ^{2}

 

and from Eq. (24.57) Poisson’s ratio is

 

ν_{x y}=\frac{-\varepsilon_{y}}{\varepsilon_{x}}=\frac{-a_{12}}{a_{11}}  (24.57)

 

ν_{x y}=\frac{-\left(-7.1 \times 10^{-6}\right)}{23.8 \times 10^{-6}}=0.3

 

Lastly, from Eq. (24.62)

 

\frac{\bar{\tau}_{x y}}{\gamma_{x y}}=\frac{1}{t a_{33}}=G_{x y}  (24.62)

 

G_{x y}=\frac{1}{4 \times 0.15 \times 61.9 \times 10^{-6}}=26923 N / mm ^{2}

 

The shear coupling coefficient, m_{x} is, from Eq. (24.58), zero. Note that the equivalent elastic constants are identical in value to the given elastic constants for the ply. This could have been deduced initially since, for an isotropic ply, the elastic constants are independent of laminate thickness. However, the example serves to illustrate the method.

 

\frac{\gamma_{x y}}{\varepsilon_{x}}=\frac{a_{13}}{a_{11}}=-m_{x}  (24.58)

Related Answered Questions