Question 9.91: Figure 9.91 shows a parallel combination of an inductance an...

Figure 9.91 shows a parallel combination of an inductance and a resistance. If it is desired to connect a capacitor in series with the parallel combination such that the net impedance is resistive at 10 MHz, what is the required value of C?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{aligned}{Z}_{\text {in }} &=\frac{1}{j \omega C}+R \| \mathrm{j} \omega \mathrm{L} \\\\{Z}_{\text {in }} &=\frac{-\mathrm{j}}{\omega \mathrm{C}}+\frac{\mathrm{j} \omega \mathrm{LR}}{\mathrm{R}+\mathrm{j} \omega \mathrm{L}} \\\\&=\frac{-\mathrm{j}}{\omega \mathrm{C}}+\frac{\omega^{2} \mathrm{L}^{2} \mathrm{R}+\mathrm{j} \omega \mathrm{L} \mathrm{R}^{2}}{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}\\\end{aligned}

To have a resistive impedance, \operatorname{Im}\left(\mathbf{Z}_{\text {in }}\right)=0. Hence,

\frac{-1}{\omega C}+\frac{\omega \mathrm{LR}^{2}}{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}=0 \\

 

\frac{1}{\omega \mathrm{C}}=\frac{\omega \mathrm{LR}^{2}}{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}} \\

 

\mathrm{C}=\frac{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}{\omega^{2} \mathrm{LR}^{2}} \\

 

\text { where } \omega=2 \pi \mathrm{f}=2 \pi \times 10^{7}\\

 

\mathrm{C}=\frac{9 \times 10^{4}+\left(4 \pi^{2} \times 10^{14}\right)\left(400 \times 10^{-12}\right)}{\left(4 \pi^{2} \times 10^{14}\right)\left(20 \times 10^{-6}\right)\left(9 \times 10^{4}\right)} \\\\

 

\mathrm{C}=\frac{9+16 \pi^{2}}{72 \pi^{2}} \mathrm{nF} \\\\

 

\mathrm{C}={235 \mathrm{p} \mathrm{F}}

Related Answered Questions