Figure 9.91 shows a parallel combination of an inductance and a resistance. If it is desired to connect a capacitor in series with the parallel combination such that the net impedance is resistive at 10 MHz, what is the required value of C?
Figure 9.91 shows a parallel combination of an inductance and a resistance. If it is desired to connect a capacitor in series with the parallel combination such that the net impedance is resistive at 10 MHz, what is the required value of C?
To have a resistive impedance, \operatorname{Im}\left(\mathbf{Z}_{\text {in }}\right)=0. Hence,
\frac{-1}{\omega C}+\frac{\omega \mathrm{LR}^{2}}{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}=0 \\\frac{1}{\omega \mathrm{C}}=\frac{\omega \mathrm{LR}^{2}}{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}} \\
\mathrm{C}=\frac{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}{\omega^{2} \mathrm{LR}^{2}} \\
\text { where } \omega=2 \pi \mathrm{f}=2 \pi \times 10^{7}\\
\mathrm{C}=\frac{9 \times 10^{4}+\left(4 \pi^{2} \times 10^{14}\right)\left(400 \times 10^{-12}\right)}{\left(4 \pi^{2} \times 10^{14}\right)\left(20 \times 10^{-6}\right)\left(9 \times 10^{4}\right)} \\\\
\mathrm{C}=\frac{9+16 \pi^{2}}{72 \pi^{2}} \mathrm{nF} \\\\
\mathrm{C}={235 \mathrm{p} \mathrm{F}}