Question 17.5: Figure Ex. 17.5 shows a straight shaft drilled pier construc...

Figure Ex. 17.5 shows a straight shaft drilled pier constructed in homogeneous loose to medium dense sand. The pile and soil properties are:

L=25 m , d=1.5 m , c=0, \phi=36^{\circ} \text { and } \gamma=17.5 kN / m ^{3}

Estimate (a) the ultimate load capacity, and (b) the allowable load with F_{s}=2.5. The average SPT value N_{\text {cor }}=30 \text { for } \phi=36^{\circ}.

Use (i) Vesic’s method, and (ii) the O’Neill and Reese method.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) Vesic’s method

From Eq. (17.10) for e = 0

 

q_{b}=\left(N_{q}-1\right) q_{o}^{\prime} s_{q} d_{q} C_{q} (a)

 

q_{o}^{\prime}=25 \times 17.5=437.5 kN / m ^{2}

 

From Eq. (17.16) \phi_{r e l}=\frac{\phi^{\circ}-25^{\circ}}{45^{\circ}-25^{\circ}}=\frac{36-25}{20}=0.55

 

FromEq. (17.15) \Delta=\frac{0.005(1-0.55) \times 437.5}{101} \approx 0.01

 

FromEq. (17.14) \mu_{d}=0.1+0.3 \phi_{r e l}=0.1+0.3 \times 0.55=0.265

 

From Eq. (17.17) E_{d}=200 p_{a}=200 \times 101=20,200 kN / m ^{2}

 

From Eq. (17.13) I_{r}=\frac{E_{d}}{2\left(1+\mu_{d}\right) q_{o}^{\prime} \tan \phi}=\frac{20,200}{2(1+0.265) \times 437.5 \tan 36^{\circ}}=25

 

FromEq. (17.12)  I_{r r}=\frac{I_{r}}{1+\Delta I_{r}}=\frac{25}{1+0.01 \times 25}=20

 

FromEq. (17.11b)

 

C_{q}=\exp \left[-3.8 \tan 36^{\circ}\right]+\frac{3.07 \sin 36^{\circ} \log _{10} 2 \times 20}{1+\sin 36^{\circ}}=\exp -(0.9399)=0.391

 

From Fig. 17.14, N_{q}=30 \text { for } \phi=36^{\circ}

 

From Table (17.2) s_{q}=1+\tan 36^{\circ}=1.73

 

d_{q}=1+2 \tan 36^{\circ}\left(1-\sin 36^{\circ}\right)^{2} \frac{3.14}{180} \times \tan ^{-1} \frac{25}{1.5}=1.373

 

Substituting in Eq. (a)

 

q_{b}=(30-1) \times 437.5 \times 1.73 \times 1.373 \times 0.391=11,783 kN / m ^{2}>11,000 kN / m ^{2}

 

As per Tomlinson (1986) the computed q_{b} should be less than 1 1,000 kN / m ^{2}.

 

Hence Q_{b}=\frac{3.14}{4} \times(1.5)^{2} \times 11,000=19,429 kN

 

Skin load Q_{f}

 

From Eqs (17.31) and (17.32)

 

f_{s}=\beta q_{o}^{\prime}, \beta=1.5-0.245 z^{0.5}, \text { where } z=\frac{L}{2}=\frac{25}{2}=12.5 m

 

Substituting

 

\beta=1.5-0.245 \times(12.5)^{0.5}=0.63

 

Hence f_{s}=0.63 \times 437.5=275.62 kN / m ^{2}

 

Per Tomlinson (1986) f_{s} should be limited to 110 kN / m ^{2} . \text { Hence } f_{s}=110 kN / m ^{2}

 

Therefore Q_{f}=\pi d L f_{s}=3.14 \times 1.5 \times 25 \times 110=12,953 kN

 

Ultimate load Q_{u}=19,429+12,953=32,382 kN

 

Q_{a}=\frac{32,382}{2.5}=12,953 kN

 

O’Neill and Reese method

This method relates q_{b} to the SPT N value as per Eq. (17.19a)

 

q_{b}=57.5 N kN / m ^{2}=57.5 \times 30=1,725 kN / m ^{2}

 

Q_{b}=A_{b} q_{b}=1.766 \times 1,725=3,046 kN

 

The method for computing Q_{f} remains the same as above.

 

Now Q_{u}=3,406+12,953=15,999

 

Q_{a}=\frac{15,999}{2.5}=6,400 kN

 

q_{b}=c N_{c} s_{c} d_{c} C_{c}+\left(N_{q}-1\right) q_{o}^{\prime} s_{q} d_{q} C_{q} (17.10)

 

C_{q}=\exp \left\{[-3.8 \tan \phi]+\left[(3.07 \sin \phi) \log _{10} 2 I_{r r}\right] /(1+\sin \phi)\right\} (17.11b)

 

I_{r r}=\frac{I_{r}}{1+\Delta I_{r}} (17.12)

 

I_{r}=\frac{E_{d}}{2\left(1+\mu_{d}\right) q_{o}^{\prime} \tan \phi} (17.13)

 

\mu_{d}=0.1+0.3 \phi_{r e l} (17.14)

 

\Delta=\frac{0.005\left(1-\phi_{\text {rel }}\right) q_{o}^{\prime}}{p_{a}} (17.15)

 

\phi_{\text {rel }}=\frac{\left(\phi^{\circ}-25^{\circ}\right)}{45^{\circ}-25^{\circ}} \text { for } 25^{\circ} \leq \phi^{\circ} \leq 45^{\circ} (17.16)

 

E_{d}=100 \text { to } 200 p_{a} (17.17)

 

q_{b}\left(=q_{\max }\right)=57.5 N kPa \leq 2900 kN / m ^{2} (17.19a)

 

f_{s i}=\beta_{i} q_{o i}^{\prime} (17.31)

 

\beta_{i}=1.5-0.245\left[z_{i}\right]^{0.5} (17.32)

 

Table 17.2 Shape and depth factors (Eq. 17.3) (Chen and Kulhawy, 1994)
Factors Value
s_{c} 1+\frac{N_{q}}{N_{c}}
s_{d} d_{q}-\frac{1-d_{q}}{N_{c} \tan \phi}
s_{q} 1+\tan \phi
d_{q} 1+2 \tan \phi(1-\sin \phi)^{2} \frac{\pi}{180} \tan ^{-1} \frac{L}{d}
17.5.

Related Answered Questions