Find a basis and the dimension of the solution space of the homogeneous system
x_{1} + 2x_{2} + 2x_{3} + x_{4} + 4x_{5} = 0 \\ 3x_{1} + 7x_{2} + 7x_{3} + 3x_{4} + 13x_{5} = 0 \\ 2x_{1} + 5x_{2} + 5x_{3} + 2x_{4} + 9x_{5} = 0
Find a basis and the dimension of the solution space of the homogeneous system
x_{1} + 2x_{2} + 2x_{3} + x_{4} + 4x_{5} = 0 \\ 3x_{1} + 7x_{2} + 7x_{3} + 3x_{4} + 13x_{5} = 0 \\ 2x_{1} + 5x_{2} + 5x_{3} + 2x_{4} + 9x_{5} = 0
We found in Exercise 2.2.4 that the general solution of this system is
\vec{x} = t_{1} \left [ \begin{matrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{matrix} \right ] + t_{2} \left [ \begin{matrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{matrix} \right ] + t_{3} \left [ \begin{matrix} -2 \\ -1 \\ 0 \\ 0 \\ 1 \end{matrix} \right ] , \ \ \ \ \ t_{1}, t_{2}, t_{3} \in \mathbb{R}
This shows that a spanning set for the solution space is
\mathfrak{B} = \left\{\left [ \begin{matrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{matrix} \right ] , \left [ \begin{matrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{matrix} \right ] , \left [ \begin{matrix} -2 \\ -1 \\ 0 \\ 0 \\ 1 \end{matrix} \right ] \right\}
It is not difficult to verify that B is also linearly independent. Consequently, B is a basis for the solution space, and hence the dimension of the solution space is 3.