Question 4.69: Find a few of the Bohr energies for hydrogen by “wagging the...

Find a few of the Bohr energies for hydrogen by “wagging the dog” (Problem 2.55), starting with Equation 4.53—or, better yet, Equation 4.56; in fact, why not use Equation 4.68 to set ρ_0 = 2n , and tweak n? We know that the correct solutions occur when n is a positive integer, so you might start with n = 0.9 , 1.9 , 2.9 , etc. and increase it in small increments—the tail should wag when you pass 1, 2, 3, …. Find the lowest three ns, to four significant digits, first for \ell = 0 , and then for \ell = 1 and \ell = 2 Warning: Mathematica doesn’t like to divide by zero, so you might change ρ to (\rho+0.000001) in the denominator. Note: u(0)=0 \text { in all cases, but } u^{\prime}(0)=0 \text { only for } \ell \geq 1 (Equation 4.59). So for \ell = 0 you can use u(0)=0, u^{\prime}(0)=1 . \text { For } \ell>0 you might be tempted to use u(0)=0 \text { and } u^{\prime}(0)=0 , but Mathematica is lazy, and will go for the trivial solution u(\rho) \equiv 0 ; better, therefore, to use (say) u(1)=1 \text { and } u^{\prime}(0)=0 .

-\frac{\hbar^{2}}{2 m_{e}} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m_{e}} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u           (4.53).

\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{\ell(\ell+1)}{\rho^{2}}\right] u           (4.56).

\rho_{0}=2 n           (4.68).

u(\rho) \sim C \rho^{\ell+1}           (4.59).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\underline{\ell=0} .

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 0.9999\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 10\} ,

MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.02, 0.5\}].

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.0001\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 10\} ,

MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.1, 0.5\}].

So the lowest n is between 0.9999 and 1.0001.

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 2.0001\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,

MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.4, 0.2\}].

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.9999\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,

MaxSteps → 10 000]], \{x, 0.01, 15\}, PlotRange → \{-0.4, 0.2\}].

So the next n is between 1.9999 and 2.0001.

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.9999\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,

MaxSteps → 10 000]], \{x, 0.01, 15\}, PlotRange → \{-0.4, 0.2\}].

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 2.9999\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 17\} ,

MaxSteps → 10 000]], \{x, 0.01, 17\}, PlotRange → \{-0.2, 0.3\}].

\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 3.00001\right.\right.\right. .

) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 20\} ,

MaxSteps → 10 000]], \{x, 0.01, 20\}, PlotRange → \{-0.2, 0.3\}].

So the third n is between 2.9999 and 3.00001.

\underline{\ell=1} .

This time there is no solution for n = 1; the lowest state (no nodes) is around n = 2:

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 1.999)/(x + 0.000001)) + .

(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 10\}, MaxSteps → 10 000]], \{x, 0.1, 10\}] .

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.0001)/(x + 0.000001)) + .

(2/(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .

So the lowest n is between 1.999 and 2.0001.

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.9999)/(x + 0.000001)) + .

(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 18\}, MaxSteps → 10 000]], \{x, 0.1, 18\}] .

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.0001)/(x + 0.000001)) + .

(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .

So the next n is between 2.9999 and 3.0001.

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.9999)/(x + 0.000001)) +

(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.0001)/(x + 0.000001)) +

(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .

So the third n is between 3.9999 and 4.0001.

\underline{\ell=2} .

This time there is no solution for n = 1 or n = 2; the lowest state (no nodes) is around n = 3:

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.999)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.0001)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

So the lowest n is between 2.999 and 3.0001.

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.999)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.0001)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

So the next n is between 3.9999 and 4.0001.

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.999)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 25\}, MaxSteps → 10 000]], \{x, 0.1, 25\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 5.0001)/(x + 0.000001)) + .

(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .

u[x], \{x, 10^(-8), 25\}, MaxSteps → 10 000]], \{x, 0.1, 25\}] .

NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may  not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».

So the third n is between 4.9999 and 5.0001.

150
151
152
153
154
155
156
157
158

Related Answered Questions