\underline{\ell=0} .
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 0.9999\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 10\} ,
MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.02, 0.5\}].
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.0001\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 10\} ,
MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.1, 0.5\}].
So the lowest n is between 0.9999 and 1.0001.
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 2.0001\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,
MaxSteps → 10 000]], \{x, 0.01, 10\}, PlotRange → \{-0.4, 0.2\}].
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.9999\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,
MaxSteps → 10 000]], \{x, 0.01, 15\}, PlotRange → \{-0.4, 0.2\}].
So the next n is between 1.9999 and 2.0001.
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 1.9999\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 15\} ,
MaxSteps → 10 000]], \{x, 0.01, 15\}, PlotRange → \{-0.4, 0.2\}].
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 2.9999\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 17\} ,
MaxSteps → 10 000]], \{x, 0.01, 17\}, PlotRange → \{-0.2, 0.3\}].
\text { Plot [Evaluate }\left[\mathrm { u } [ \mathrm { x } ] / . \text { NDSolve } \left[\left\{ u ^{\prime \prime}[ x ]-(1-(2 \star 3.00001\right.\right.\right. .
) / (x + 0.000001)) u[x] ⩵ 0, u[0] ⩵ 0, u'[0] ⩵ 1\}, u[x], \{x, 10^(-8), 20\} ,
MaxSteps → 10 000]], \{x, 0.01, 20\}, PlotRange → \{-0.2, 0.3\}].
So the third n is between 2.9999 and 3.00001.
\underline{\ell=1} .
This time there is no solution for n = 1; the lowest state (no nodes) is around n = 2:
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 1.999)/(x + 0.000001)) + .
(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 10\}, MaxSteps → 10 000]], \{x, 0.1, 10\}] .
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.0001)/(x + 0.000001)) + .
(2/(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .
So the lowest n is between 1.999 and 2.0001.
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.9999)/(x + 0.000001)) + .
(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 18\}, MaxSteps → 10 000]], \{x, 0.1, 18\}] .
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.0001)/(x + 0.000001)) + .
(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .
So the next n is between 2.9999 and 3.0001.
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.9999)/(x + 0.000001)) +
(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.0001)/(x + 0.000001)) +
(2 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .
So the third n is between 3.9999 and 4.0001.
\underline{\ell=2} .
This time there is no solution for n = 1 or n = 2; the lowest state (no nodes) is around n = 3:
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 2.999)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.0001)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
So the lowest n is between 2.999 and 3.0001.
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 3.999)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 15\}, MaxSteps → 10 000]], \{x, 0.1, 15\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.0001)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 20\}, MaxSteps → 10 000]], \{x, 0.1, 20\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
So the next n is between 3.9999 and 4.0001.
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 4.999)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 25\}, MaxSteps → 10 000]], \{x, 0.1, 25\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
Plot[Evaluate[u[x] /. NDSolve [\{u''[x] – (1 – ((2 * 5.0001)/(x + 0.000001)) + .
(6 /(x^2 + 0.000000001))) u[x] ⩵ 0, u[1] ⩵ 1, u'[0] ⩵ 0\}, .
u[x], \{x, 10^(-8), 25\}, MaxSteps → 10 000]], \{x, 0.1, 25\}] .
NDSolve : bvluc: The equations derived from the boundary conditions are numerically ill-conditioned. The boundary conditions may not be sufficient to uniquely define a solution. The computed solution may match the boundary conditions poorly».
So the third n is between 4.9999 and 5.0001.