Find all loop currents in the electric circuit in Figure 2.4.5.
Find all loop currents in the electric circuit in Figure 2.4.5.
We use Kirchhoff’s Voltage Law on each of the four loops:
the top left loop: i_{1} + 2(i_{1} – i_{2}) + 4(i_{1} – i_{3}) = 8
the top right loop: 3i_{2} + 2(i_{2} – i_{4}) + 2(i_{2} – i_{1}) = 10
the bottom left loop: 2i_{3} + 4(i_{3} – i_{1}) + 4(i_{3} – i_{4}) = 0
the bottom right loop: 2i_{4} + 4(i_{4} – i_{3}) + 2(i_{4} – i_{2}) = -10
Solving this system of 4 equations in the 4 unknowns I_{1}, I_{2}, I_{3}, I_{4}, we find that the currents are
\left [ \begin{matrix} I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \end{matrix} \right ] = \frac{1}{1069} \left [ \begin{matrix} 2172 \\ 1922 \\ 702 \\ -790 \end{matrix} \right]