Question 6.5: Find all of the matrix elements of between the states with n...

Find all of the matrix elements of between the states with n=2, \ell=1 and n’=3 , \ell '=2:

\left\langle \begin{matrix}32\acute{m} \begin{vmatrix} r_{i} \\ \end{vmatrix} 21m\\ \end{matrix} \right\rangle

where m=-1,0,1 ,m’=-2,-1 ,0,1,2  and r_{i}=x,y,z.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With the vector operator \hat{V}=\hat{r} , our components are V_{z}=z , V_{+}=x+iy, and V_{-}=x-iy. We start by calculating one of the matrix elements,

\left\langle \begin{matrix}320 \begin{vmatrix} z \\ \end{vmatrix} 210\\ \end{matrix} \right \rangle=\int{\psi_{320}}(r)r\cos\theta \psi_{210}(r)d^{3}r
=\int R_{32} (r)^{*}r R_{21}(r)r^{2}dr\int Y^{0}_{2}(\theta ,\phi )^{*}\cos\theta Y^{0}_{1}(\theta ,\phi )\cos\theta d\Omega =\frac{2^{12}3^{3}\sqrt{3} }{5^{7}}a

From Equation 6.61 [\left\langle \acute{n} \acute{\ell}\acute{m} \begin{matrix}\begin{vmatrix} \hat{V}_{z} \\ \end{vmatrix} n\ell m\\ \end{matrix} \right\rangle =C^{\ell}_{m} {}^{l}_{0}{}^{\acute {\ell} }_{\acute{m} }\left\langle \begin{matrix} n \acute{\ell} \begin{Vmatrix} V \\ \end{Vmatrix} n\ell \\ \end{matrix} \right\rangle ] we can then determine the reduced matrix element

\left\langle \begin{matrix}320 \begin{vmatrix} z \\ \end{vmatrix} 210\\ \end{matrix}\right\rangle=C^{112}_{000} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle
=\frac{2^{12}3^{3}\sqrt{3} }{5^{7}}a =\sqrt{\frac{2}{3} } \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle

Therefore

\left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle =\frac{2^{12}3^{4}}{5^{7}\sqrt{2} }a       (6.63)

We can now find all of the remaining matrix elements from Equations 6.59–6.60 [\left\langle \acute{n} \acute{\ell}\acute{m} \begin{matrix} \begin{vmatrix} \hat{V}_{+} \\ \end{vmatrix} n\ell m\\ \end{matrix} \right\rangle =-\sqrt{2} C^{\ell} _{m} {}^{l}_{l}{}^{\acute{\ell} }_{\acute{m} }\left \langle \begin{matrix} n \acute{\ell} \begin{Vmatrix} V \\ \end{Vmatrix} n\ell \\ \end{matrix} \right\rangle] ,[\left\langle \acute{n} \acute{\ell}\acute{m} \begin{matrix}\begin{vmatrix} \hat{V}_{-} \\ \end{vmatrix} n\ell m\\ \end{matrix} \right\rangle =\sqrt{2}C^{\ell}_{m} {}^{l}_{-l}{}^{\acute{\ell} }_{\acute{m} }\left\langle \begin{matrix} n \acute{\ell} \begin{Vmatrix} V \\ \end{Vmatrix} n\ell \\ \end{matrix} \right\rangle ] with the help of the Clebsch–Gordan table. The relevant coefficients are shown in Figure 6.8. The nonzero matrix elements are

\left\langle \begin{matrix} 322\begin{vmatrix} \hat{V}_{+} \\ \end{vmatrix} 211 \\ \end{matrix} \right\rangle=-\sqrt{2}C^{112}_{112} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle=-\sqrt{2}\left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 321\begin{vmatrix} \hat{V}_{+} \\ \end{vmatrix} 210 \\ \end{matrix} \right\rangle=-\sqrt{2}C^{112}_{011} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle=-\left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 320\begin {vmatrix} \hat{V}_{+} \\ \end{vmatrix} 21-1 \\ \end{matrix} \right\rangle=-\sqrt{2} C^{112} _{-110} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=-\frac{1}{\sqrt{3} } \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 320\begin {vmatrix} \hat{V}_{-} \\ \end{vmatrix} 211 \\ \end{matrix} \right\rangle=\sqrt{2} C^{1} _{1}{}^{12}_{-10} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=\frac{1}{\sqrt{3} } \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 32-1\begin {vmatrix} \hat{V}_{-} \\ \end{vmatrix} 210 \\ \end{matrix} \right\rangle=\sqrt{2} C^{1} _{0}{}^{1}_{-1} {}^{2}_{-1} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle= \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 32-2\begin {vmatrix} \hat{V}_{-} \\ \end{vmatrix} 21-1 \\ \end{matrix} \right\rangle=\sqrt{2} C^{1} _{-1}{}^{1}_{-1} {}^{2}_{-2} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=\sqrt{2} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 321\begin {vmatrix} \hat{V}_{z} \\ \end{vmatrix} 211 \\ \end{matrix} \right\rangle= C^{1} _{1}{}^{1}_{0} {}^{2}_{1} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=\frac{1}{\sqrt{2}} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 320\begin {vmatrix} \hat{V}_{z} \\ \end{vmatrix} 210 \\ \end{matrix} \right\rangle= C^{1} _{0}{}^{1}_{0} {}^{2}_{0} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=\sqrt{\frac{2}{3}} \left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

\left\langle \begin{matrix} 32-1\begin {vmatrix} \hat{V}_{z} \\ \end{vmatrix} 21-1 \\ \end{matrix} \right\rangle= C^{1} _{-1}{}^{1}_{0} {}^{2}_{-1} \left\langle \begin{matrix} 32\begin {Vmatrix} V \\ \end{Vmatrix} 21 \\ \end{matrix} \right \rangle=\frac{1}{\sqrt{2}}\left\langle \begin{matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle

with the reduced matrix element given by Equation 6.63 [\left\langle \begin {matrix} 32\begin{Vmatrix} V \\ \end {Vmatrix} 21 \\ \end{matrix} \right\rangle =\frac{2^{13}3^{4}}{5^{7}\sqrt{2} }a ]. The other thirty-six matrix elements vanish due to the selection rules (Equations 6.56–6.58 and 6.62 [\left\langle \acute{n} \acute{\ell}\acute{m} \begin{matrix}\begin{vmatrix} \hat{V}_{+} \\ \end{vmatrix} n\ell m\\ \end{matrix} \right\rangle =0 unless \acute{m}=m+1 ] [\left\langle \acute{n} \acute{\ell}\acute{m} \begin{matrix}\begin{vmatrix} \hat{V}_{-} \\ \end{vmatrix} n\ell m\\ \end{matrix} \right\rangle =0   unless \acute{m} =m-1 ] , [\Delta \ell=0,\pm 1, and \Delta m=0,\pm 1.]) . We have determined all forty-five matrix elements and have only needed to evaluate a single integral. I’ve left the matrix elements in terms of  V_{+} and V_{-} but it’s straightforward to write them in terms of x and y using the expressions on page 259.

6.8 fiw

Related Answered Questions