Question 3.7.1: Find an LU-decomposition of A = [2 -1 4 4 -1 6 -1 -1 3].

Find an LU-decomposition of A = \left [ \begin{matrix} 2 & -1 & 4 \\ 4 & -1 & 6 \\ -1 & -1 & 3 \end{matrix} \right ] .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Row reducing and keeping track of our row operations gives

\left [ \begin{matrix} 2 & -1 & 4 \\ 4 & -1 & 6 \\ -1 & -1 & 3 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 2R_{1} \\R_{3} + \frac{1}{2} R_{1} \end{matrix} \sim \left [ \begin{matrix} 2 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & -3/2 & 5 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} + \frac{3}{2} R_{2} \end{matrix} \sim \left [ \begin{matrix} 2 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{matrix} \right ] = U

We have E_{3} E_{2} E_{1} A = U, so A = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} U, where

E_{1} = \left [ \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] , E_{2} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{matrix} \right ] , E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3/2 & 1 \end{matrix} \right ]

Hence, we let

L = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} = \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3/2 & 1 \end{matrix} \right ]

= \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & -3/2 & 1 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1/2 & -3/2 & 1 \end{matrix} \right ]

And we get A = LU.

Related Answered Questions

Taking dot products of the rows of the first matri...
By row reducing, we get \left [ \begin{matr...