Find an LU-decomposition of A = \left [ \begin{matrix} 2 & -1 & 4 \\ 4 & -1 & 6 \\ -1 & -1 & 3 \end{matrix} \right ] .
Find an LU-decomposition of A = \left [ \begin{matrix} 2 & -1 & 4 \\ 4 & -1 & 6 \\ -1 & -1 & 3 \end{matrix} \right ] .
Row reducing and keeping track of our row operations gives
\left [ \begin{matrix} 2 & -1 & 4 \\ 4 & -1 & 6 \\ -1 & -1 & 3 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 2R_{1} \\R_{3} + \frac{1}{2} R_{1} \end{matrix} \sim \left [ \begin{matrix} 2 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & -3/2 & 5 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} + \frac{3}{2} R_{2} \end{matrix} \sim \left [ \begin{matrix} 2 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{matrix} \right ] = U
We have E_{3} E_{2} E_{1} A = U, so A = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} U, where
E_{1} = \left [ \begin{matrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] , E_{2} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1 \end{matrix} \right ] , E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3/2 & 1 \end{matrix} \right ]
Hence, we let
L = E_{1} ^{-1} E_{2}^{-1} E_{3}^{-1} = \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3/2 & 1 \end{matrix} \right ]
= \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & -3/2 & 1 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1/2 & -3/2 & 1 \end{matrix} \right ]
And we get A = LU.