Question 2.4.5: Find constants A, B, C, D, E, and F such that 3x^5 - 2x^4 - ...

Find constants A, B, C, D, E, and F such that

\frac{3x^5 - 2x^4 - x + 1}{(x^2 + 1)^2 (x^2 + x + 1)} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{Ex + F}{x^2 + x + 1}

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first multiply both sides of the equation by (x^2 + 1)^2 (x^2 + x + 1) to get

3x^5 – 2x^4 – x + 1 = (Ax + B)(x^2 + 1)(x^2 + x + 1) + (Cx + D)(x^2 + x + 1)  \\ + (Ex + F)(x^2 + 1)^2

Expanding the right and collecting coefficients of like powers of x gives

3x^5 – 2x^4 – x + 1 = (A + E)x^5 + (A + B + F)x^4 + (2A + B + C + 2E)x^3 \\

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + (A + 2B + C + D + 2F)x^2 + (A + B + C + D + E)x + B + D + F

Comparing coefficients of like powers of x gives the system of linear equations

A + E = 3 \\

A + B + F = -2 \\

2A + B + C +2E = 0 \\

A + 2B + C + D + 2F = 0 \\

  A + B + C + D + E = -1 \\

B + D + F = 1

Row reducing the corresponding augmented matrix gives

\left [ \begin{matrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 1 & 1 & 0 & 2 & 0 \\ 1 & 2 & 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{matrix} \left | \begin{matrix} 3 \\ -2 \\ 0 \\ 0 \\ -1 \\ 1 \end{matrix} \right.\right] \thicksim \left [ \begin{matrix} 1 & 0 & 0 & 0` & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{matrix} \left | \begin{matrix} -1 \\ -7 \\ 1 \\ 2 \\ 4 \\ 6 \end{matrix} \right.\right ]

Hence,

\frac{3x^5 – 2x^4 – x + 1}{(x^2 + 1)^2 (x^2 + x + 1)} = \frac{-x – 7}{x^2 + 1} + \frac{x + 2}{(x^2 + 1)^2} + \frac{4x + 6}{x^2 + x + 1}

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...