Question 3.6.1: Find the 2 × 2 elementary matrix corresponding to each row o...

Find the 2 × 2 elementary matrix corresponding to each row operation by performing the row operation on the 2 × 2 identity matrix.

(a) R_{2} - 3R_{1} \ \ \ \ \ \ \ \ (b) 3R_{2} \ \ \ \ \ \ \ \ (c) R_{1} \updownarrow R_{2}
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For (a) we have

\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 3R_{1} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 1 & 0 \\ -3 & 1 \end{matrix} \right ]

Thus, the corresponding elementary matrix is E_{1} = \left [ \begin{matrix} 1 & 0 \\ -3 & 1 \end{matrix} \right ] .

For (b) we have

\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ 3R_{2} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right ]

Thus, the corresponding elementary matrix is E_{2} = \left [ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right ] .

For (c) we have

\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ R_{1} \updownarrow R_{2} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right ]

Thus, the corresponding elementary matrix is E_{3} = \left [ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right ] .

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...