Find the 2 × 2 elementary matrix corresponding to each row operation by performing the row operation on the 2 × 2 identity matrix.
(a) R_{2} - 3R_{1} \ \ \ \ \ \ \ \ (b) 3R_{2} \ \ \ \ \ \ \ \ (c) R_{1} \updownarrow R_{2}Find the 2 × 2 elementary matrix corresponding to each row operation by performing the row operation on the 2 × 2 identity matrix.
(a) R_{2} - 3R_{1} \ \ \ \ \ \ \ \ (b) 3R_{2} \ \ \ \ \ \ \ \ (c) R_{1} \updownarrow R_{2}For (a) we have
\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ R_{2} – 3R_{1} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 1 & 0 \\ -3 & 1 \end{matrix} \right ]
Thus, the corresponding elementary matrix is E_{1} = \left [ \begin{matrix} 1 & 0 \\ -3 & 1 \end{matrix} \right ] .
For (b) we have
\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ 3R_{2} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right ]
Thus, the corresponding elementary matrix is E_{2} = \left [ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right ] .
For (c) we have
\left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] \begin{matrix} \\ R_{1} \updownarrow R_{2} \end{matrix} \ \ \ \ \sim \left [ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right ]
Thus, the corresponding elementary matrix is E_{3} = \left [ \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \right ] .