Question 5.P.10: Find the angle between the angular momentum l = 4 and the z-...

Find the angle between the angular momentum l = 4 and the z-axis for all possible orientations.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since m_{l} =0,\pm 1,\pm 2, … ,\pm l and the angle between the orbital angular momentum l and the z-axis is \cos \theta _{ml} =m_{l} /\sqrt{l(l+1)} we have

\theta _{ml} =\cos ^{-1} \left[\frac{m_{l}}{\sqrt{l(l+1)}} \right] =\cos ^{-1} \left[\frac{m_{l}}{2\sqrt{5} } \right];                (5.282)

hence

\theta _{0} =\cos ^{-1} (0)=90° ,                               (5.283)

\theta _{1} =\cos ^{-1} \left[\frac{1}{2\sqrt{5} } \right]=77.08° ,             \theta _{2} =\cos ^{-1} \left[\frac{2}{2\sqrt{5} } \right]=63.43° ,               (5.284)

\theta _{3} =\cos ^{-1} \left[\frac{3}{2\sqrt{5} } \right]=47.87° ,             \theta _{4} =\cos ^{-1} \left[\frac{4}{2\sqrt{5} } \right]=26.57° .               (5.285)

The angles for the remaining quantum numbers m_{4}= -1,-2,-3 ,-4 can be inferred at once from the relation

\theta _{-ml}=180° -\theta _{ml},                      (5.286)

hence

\theta _{-1} =180°-77.08°=102.92° ,        \theta _{-2} =180°-63.43°=116.57° ,         (5.287)

\theta _{-3} =180°-47.87°=132.13° ,        \theta _{-4} =180°-26.57°=153.43° .          (5.288)

Related Answered Questions

Consider two molecules of masses m_{1}[/lat...