Question 5.6.6: Find the center of mass of the solid in Example 5.

Find the center of mass of the solid in Example 5.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have already found that \mu=\frac{47}{84}. We next calculate the moments.

M_{y z}=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} x(x+2 y+4 z) d z  d y  d x

 

\begin{aligned}&=\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left.\left(\left(x^{2}+2 x y\right) z+2 x z^{2}\right)\right|_{x-y} ^{x+y}\right\} d y d x \\&=\int_{0}^{1} \int_{x^{2}}^{x}\left(10 x^{2} y+4 x y^{2}\right) d y d x=\int_{0}^{1}\left\{\left.\left(5 x^{2} y^{2}+\frac{4 x y^{3}}{3}\right)\right|_{x^{2}} ^{x}\right\} d x \\&=\int_{0}^{1}\left(5 x^{4}-5 x^{6}+\frac{4}{3} x^{4}-\frac{4}{3} x^{7}\right) d x=1-\frac{5}{7}+\frac{4}{15}-\frac{1}{6}=\frac{27}{70} \\M_{x z} &=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} y(x+2 y+4 z) d z d y d x \\&=\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left.\left[\left(x y+2 y^{2}\right) z+2 y z^{2}\right]\right|_{x-y} ^{x+y}\right\} d y d x \\&=\int_{0}^{1} \int_{x^{2}}^{z}\left(10 x y^{2}+4 y^{3}\right) d y d x=\int_{0}^{1}\left\{\left.\left(\frac{10}{3} x y^{3}+y^{4}\right)\right|_{x^{2}} ^{x}\right\} d x \\&=\int_{0}^{1}\left(\frac{10}{3} x^{4}-\frac{10}{3} x^{7}+x^{4}-x^{8}\right) d x=\frac{2}{3}-\frac{5}{12}+\frac{1}{5}-\frac{1}{9}=\frac{61}{180}\end{aligned} \begin{aligned}M_{x y} &=\int_{0}^{1} \int_{x^{2}}^{x} \int_{x-y}^{x+y} z(x+2 y+4 z) d z  d y  d x \\&=\int_{0}^{1} \int_{x^{2}}^{x}\left\{\left.\left[(x+2 y) \frac{z^{2}}{2}+\frac{4 z^{3}}{3}\right]\right|_{x-y} ^{x+y}\right\} d y  d z \\&=\int_{0}^{1} \int_{x^{2}}^{x}\left[(x+2 y)(2 x y)+\frac{4}{3}\left(6 x^{2} y+2 y^{3}\right)\right] d y  d x \\&=\int_{0}^{1} \int_{x^{2}}^{x}\left(10 x^{2} y+4 x y^{2}+\frac{8}{3} y^{3}\right) d y  d x \\&=\int_{0}^{1}\left\{\left.\left(5 x^{2} y^{2}+\frac{4}{3} x y^{3}+\frac{2}{3} y^{4}\right)\right|_{x^{2}} ^{x}\right\} d x \\&=\int_{0}^{1}\left(5 x^{4}-5 x^{6}+\frac{4}{3} x^{4}-\frac{4}{3} x^{7}+\frac{2}{3} x^{4}-\frac{2}{3} x^{8}\right) d x \\&=\int_{0}^{1}\left(7 x^{4}-5 x^{6}-\frac{4}{3} x^{7}-\frac{2}{3} x^{8}\right) d x=\frac{7}{5}-\frac{5}{7}-\frac{1}{6}-\frac{2}{27}=\frac{841}{1890}\end{aligned}

Thus

\begin{aligned}(\bar{x}, \bar{y}, \bar{z}) &=\left(\frac{M_{y z}}{\mu}, \frac{M_{x z}}{\mu}, \frac{M_{x y}}{\mu}\right)=\left(\frac{27 / 70}{47 / 84}, \frac{61 / 180}{47 / 84}, \frac{841 / 1890}{47 / 84}\right) \\&=\left(\frac{162}{235}, \frac{427}{705}, \frac{1682}{2115}\right) \approx(0.689,0.606,0.795)\end{aligned}

Here distances are measured in meters.

Related Answered Questions

\begin{aligned}V &=\int_{0}^{1} \int_{x...