Question 5.7.5: Find the centroid of the "ice-cream-cone-shaped" region belo...

Find the centroid of the “ice-cream-cone-shaped” region below the sphere x^{2}+y^{2}+z^{2}=z and above the cone z^{2}=x^{2}+y^{2} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The region is sketched in Figure 5. Since x^{2}+y^{2}+z^{2}=\rho^{2} and z=\rho \cos \varphi, the sphere \left\{(x, y, z): x^{2}+y^{2}+z^{2}=z\right\} can be written in spherical coordinates as

\rho^{2}=\rho \cos \varphi, \quad \text { or } \quad \rho=\cos \varphi.

Since x^{2}+y^{2}=\rho^{2} \sin ^{2} \varphi \cos ^{2} \theta+\rho^{2} \sin ^{2} \varphi \sin ^{2} \theta=\rho^{2} \sin ^{2} \varphi, the equation of the cone is

\rho^{2} \cos ^{2} \varphi=\rho^{2} \sin ^{2} \varphi, \quad \text { or } \quad \cos ^{2} \varphi=\sin ^{2} \varphi,

and since 0 \leq \varphi \leq \pi, the equation is

\varphi=\frac{\pi}{4}

Thus, assuming that the density of the region is the constant k, we have
\begin{aligned}\mu &=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi} k \rho^{2} \sin \varphi  d \rho  d \varphi  d \theta \\&=k \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \varphi\left\{\left.\frac{\rho^{3}}{3}\right|_{0} ^{\cos \varphi}\right\}  d \varphi  d \theta=k \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{\cos ^{3} \varphi}{3} \sin \varphi  d \varphi  d \theta \\&=k \int_{0}^{2 \pi}\left\{-\left.\frac{\cos ^{4} \varphi}{12}\right|_{0} ^{\pi / 4}\right\} d \theta=\frac{1}{12} k \int_{0}^{2 \pi} \frac{3}{4} d \theta=\frac{\pi k}{8}\end{aligned}
Since x=\rho \sin \varphi \cos \theta, we have
\begin{aligned}M_{y z} &=k \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi}(\rho \sin \varphi \cos \theta) \rho^{2} \sin \varphi  d \rho  d \varphi  d \theta \\&=k \int_{0}^{2 \pi} \cos \theta  d \theta \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi} \rho^{3} \sin ^{2} \varphi  d \rho  d \varphi=0\end{aligned}

since

\int_{0}^{2 \pi} \cos \theta d \theta=0

(an unsurprising result because of symmetry). Similarly, since y=\rho \sin \varphi \sin \theta,

M_{x z}=k \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi}(\rho \sin \varphi \sin \theta) \rho^{2} \sin \varphi  d \rho  d \varphi  d \theta=0

(again because of symmetry). Finally, since z=\rho \cos \varphi,

\begin{aligned}M_{x y} &=k \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\cos \varphi}(\rho \cos \varphi) \rho^{2} \sin \varphi  d \rho  d \varphi  d \theta \\&=\frac{k}{4} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \cos ^{5} \varphi \sin \varphi  d \varphi  d \theta=\frac{k}{4} \int_{0}^{2 \pi}\left\{-\left.\frac{\cos ^{6} \varphi}{6}\right|_{0} ^{\pi / 4}\right\} d \theta \\&=\frac{1}{24} \cdot \frac{7}{8} k \int_{0}^{2 \pi}  d \theta=\frac{7 \pi k}{96} .\end{aligned}

Thus \bar{x}=\bar{y}=0 and \bar{z}=M_{x y} / \mu=(7 \pi k / 96) /(\pi k / 8)=7 / 12.

Capture

Related Answered Questions

We have already found that \mu=\frac{47}{84...
\begin{aligned}V &=\int_{0}^{1} \int_{x...