Question 7.P.3: Find the Clebsch–Gordan coefficients associated with the add...

Find the Clebsch–Gordan coefficients associated with the addition of two angular momenta j_{1} =1 and j_{2} =1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The addition of j_{1} =1 and j_{2} =1 is encountered, for example, in a two-particle system where the angular momenta of both particles are orbital.

The allowed values of the total angular momentum are between \left|j_{1}-j_{2}\right| \leq j\leq j_{1}+j_{2}; hence j = 0, 1, 2. To calculate the relevant Clebsch–Gordan coefficients, we need to find the basis vectors \left\{|j,m 〉\right\} , which are common eigenvectors of \hat{\vec{J}} ^{2}_{1} ,\hat{\vec{J}} ^{2}_{2} ,\vec{J}^{2} and \hat{J} _{z} , in terms of \left\{|1,1;m_{1} , m_{2} 〉\right\} .

Eigenvectors |j,m 〉 associated with j = 2

The state |2,2 〉 is simply given by

|2,2 〉=|1,1;1,1 〉;                                            (7.350)

the corresponding Clebsch–Gordan coefficient is thus given by 〈1,1;1,1|2,2 〉=1.

As for |2,1 〉, it can be found by applying J_{-} to |2,2 〉 and (J_{1-} +J_{2-} ) to |1,1;1,1 〉, and then equating the two results

J_{-} |2,2 〉=(J_{1-} +J_{2-} )|1,1;1,1 〉.                      (7.351)

This leads to

2\hbar |2,1 〉=\sqrt{2} \hbar \left(|1,1;1,0 〉+|1,1;0,1 〉\right)                             (7.352)

or to

|2,1 〉=\frac{1}{\sqrt{2} } \left(|1,1;1,0 〉+|1,1;0,1 〉\right);                            (7.353)

hence 〈1,1;1,0|2,1 〉 = 〈1,1;0,1|2,1 〉 = 1/\sqrt{2} . Using (7.353), we can find |2,0 〉 by applying J_{-} to |2,1 〉 and (J_{1-} +J_{2-} ) to [|1,1;1,0 〉 + |1,1;0,1 〉]:

J_{-} |2.1 〉=\frac{1}{\sqrt{2} }\hbar (J_{1-} +J_{2-} )[|1,1;1,0 〉 + |1,1;0,1 〉],                   (7.354)

which leads to

|2,0 〉=\frac{1}{\sqrt{6} }\left(|1,1;1,-1 〉 + 2|1,1;0,0 〉 + |1,1;-1,1 〉\right) ;             (7.355)

hence 〈1,1;1,-1|2,0 〉 = 〈1,1;-1,1|2,0 〉 =1/\sqrt{6} and 〈1,1;0,0|2,0 〉 =2/\sqrt{6}.

Similarly, by repeated applications of J_{-} and (J_{1-} +J_{2-} ), we can show that

|2,-1 〉=\frac{1}{\sqrt{2} }\left(|1,1;0,-1 〉 + |1,1;-1,0 〉\right) ,               (7.356)

 

|2,-2 〉 = |1,1;-1,-1 〉 ,                             (7.357)

with 〈1,1;0,-1|2,-1 〉 = 〈1,1;-1,0|2,-1 〉 = 1/\sqrt{2} and 〈1,1;-1,-1|2,-2 〉 = 1 .

Eigenvectors |j,m 〉 associated with j = 1

The relation

|1,m 〉=\sum\limits_{m_{1}=-1}^{1}\sum\limits_{m_{2}=-1}^{1} 〈1,1; m_{1},m_{2}|1,m 〉|1,1;m_{1},m_{2}〉                        (7.358)

leads to

|1,1 〉 = a|1,1;1,0 〉 +b|1,1;0,1 〉,                          (7.359)

where a=〈1,1;1,0|1,1 〉 and b=〈1,1;0,1|1,1 〉. Since |1,1 〉 ,|1,1;1,0 〉 and |1,1;0,1 〉 are all normalized, and since is orthogonal to [latex] |1,1;0,1 〉 and a and b are real, we have

〈1,1|1,1 〉 =a^{2} +b^{2} =1.                              (6.360)

Now, since 〈2,1|1,1 〉 =0, equations (7.353) and (7.359) yield

〈2,1|1,1 〉 =\frac{a}{\sqrt{2} } +\frac{b}{\sqrt{2} } =0.                  (7.361)

A combination of (7.360) and (7.361) leads to a=-b=\pm 1/ \sqrt{2} . The signs of a and b have yet to be found. The phase convention mandates that coefficients like 〈j_{1} ,j_{2} ;j_{1} ,(j-j_{1} )|j,j 〉 must be positive. Thus, we have a=1/\sqrt{2} and b=-1/\sqrt{2}, which when inserted into (7.359) give

|1,1 〉=\frac{1}{\sqrt{2} }\left(|1,1;1,0 〉 - |1,1;0,1 〉\right) .                 (7.362)

This yields 〈1,1;1,0|1,1 〉 = \frac{1}{2} and 〈1,1;0,1 |1,1 〉 = -\frac{1}{2} .

To find |1,0 〉 we proceed as we did above when we obtained the states |2,1 〉 , |2,0 〉,...,|2,-2 〉 by repeatedly applying J_{-} on |2,2 〉. In this way, the application of J_{-} on |1,1 〉 and (J_{1-} +J_{2-} ) on [|1,1;1,0 〉 - |1,1;0,1 〉],

J_{-} |1,1 〉=\frac{1}{2}(J_{1-} +J_{2-} )[|1,1;1,0 〉 - |1,1;0,1 〉]                      (7.363)

gives

\sqrt{2} \hbar |1,0 〉=\frac{\sqrt{2} \hbar}{2} [|1,1;1,-1 〉 - |1,1;-1,1 〉] ,                        (7.364)

or

|1,0 〉=\frac{1}{\sqrt{2} }\left(|1,1;1,-1 〉 - |1,1;-1,1 〉\right) ,                    (7.365)

with 〈1,1;1,-1|1,0 〉 =\frac{1}{\sqrt{2}} and 〈1,1;-1,1 |1,0 〉 =-1/\sqrt{2} .

Similarly, we can show that

|1,-1 〉=\frac{1}{\sqrt{2} }\left(|1,1;0,-1 〉 - |1,1;-1,0 〉\right) ;                     (7.366)

hence 〈1,1;0,-1|1,-1 〉 =1/\sqrt{2} and 〈1,1;-1,0|1,-1 〉 =-1/\sqrt{2} .

Eigenvector |0,0 〉 associated with j = 0

Since

|0,0 〉=a|1,1;1,-1 〉 +b|1,1;0,0 〉 +c|1,1;-1,1 〉,                       (7.367)

where a=|1,1;1,-1|0,0 〉, b= |1,1;0,0|0,0 〉, and c= |1,1;-1,1|0,0 〉 are real, and since the states |0,0 〉,|1,1;1,-1 〉,|1,1;0,0 〉, and |1,1;-1,1 〉 are normal, we have

〈0,0|0,0 〉 = a^{2}+b^{2}+c^{2}=1.                          (7.368)

Now, combining (7.355), (7.365), and (7.367), we obtain

〈2,0|0,0 〉 = \frac{a}{\sqrt{6}} +\frac{2b}{\sqrt{6}} +\frac{c}{\sqrt{6}} =0,                            (7.369)

 

〈1,0|0,0 〉 = \frac{a}{\sqrt{2}} -\frac{c}{\sqrt{2}}=0.                             (7.370)

Since a is by convention positive, we can show that the solutions of (7.368), (7.369), and (7.370) are given by a=1/\sqrt{3} ,b=-1/ \sqrt{3} ,c=1/\sqrt{3} , and consequently

|0,0 〉=\frac{1}{\sqrt{3} } \left(|1,1;1,-1 〉 - |1,1;0,0 〉 + |1,1;-1,1 〉\right) ,           (7.371)

with 〈1,1;1,-1|0,0 〉 = 〈1,1;-1,1|0,0 〉 =1/\sqrt{3} and 〈1,1;0,0|0,0 〉 = -1/\sqrt{3} .

Note that while the quintuplet states |2,m 〉 (with m = \pm 2,\pm 1,0) and the singlet state |0,0 〉 are symmetric, the triplet states |1,m 〉 (with m =\pm 1,0) are antisymmetric under space inversion.

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...