Question 11.P.2: Find the differential and total cross sections for the scatt...

Find the differential and total cross sections for the scattering of slow (small velocity) particles from a spherical delta potential V(r)=V_{0} \delta(r-a) (you may use a partial wave analysis). Discuss what happens if there is no scattering potential.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In the case where the incident particles have small velocities, only the s-waves, l = 0, contribute to the scattering. The differential and total cross sections are given for l = 0 by (11.104):

\frac{d \sigma}{d \Omega}=\left|f_{0}\right|^{2}=\frac{1}{k^{2}} \sin ^{2} \delta_{0}, \quad \sigma=4 \pi\left|f_{0}\right|^{2}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \quad(l=0) .              (11.104)

 

\frac{d \sigma}{d \Omega}=\left|f_{0}\right|^{2}=\frac{1}{k^{2}} \sin ^{2} \delta_{0}, \quad \sigma=4 \pi\left|f_{0}\right|^{2}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \quad(l=0).          (11.144)

We need now to find the phase shift \delta_{0}. For this, we need to consider the Schrödinger equation for the radial function:

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u(r)}{d r^{2}}+\left[V_{0} \delta(r-a)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right] u(r)=E u(r),                 (11.145)

where u(r) = r (r). In the case of s states and r ≠ a, this equation yields

\frac{d^{2} u(r)}{d r^{2}}=-k^{2} u(r),                  (11.146)

where k^{2}=2 m E / \hbar^{2}. The acceptable solutions of this equation must vanish at r = 0 and be finite at r → ∞:

u(r)= \begin{cases}u_{1}(r)=A \sin (k r), & 0<r<a, \\ u_{2}(r)=B \sin \left(k r+\delta_{0}\right), & r>a.\end{cases}                 (11.147)

The continuity of u(r) at r=a, u_{2}(a)=u_{1}(a), leads to

B \sin \left(k a+\delta_{0}\right)=A \sin (k a).                       (11.148)

On the other hand, integrating (11.145) (with l = 0) from r = a – ε to r = a + ε, we obtain

-\frac{\hbar^{2}}{2 m} \int_{a-\varepsilon}^{a+\varepsilon} \frac{d^{2} u(r)}{d r^{2}} d r+V_{0} \int_{a-\varepsilon}^{a+\varepsilon} \delta(r-a) u(r) d r=E \int_{a-\varepsilon}^{a+\varepsilon} u(r) d r,                      (11.149)

and taking the limit ε → 0, we end up with

\left.\frac{d u_{2}(r)}{d r}\right|_{r=a}-\left.\frac{d u_{1}(r)}{d r}\right|_{r=a}-\frac{2 m V_{0}}{\hbar^{2}} u_{2}(a)=0 .                  (11.150)

An insertion of u_{1}(r) and u_{2}(r) as given by (11.147) into (11.150) leads to

B\left[k \cos \left(k a+\delta_{0}\right)-\frac{2 m V_{0}}{\hbar^{2}} \sin \left(k a+\delta_{0}\right)\right]=A k \cos (k a).                (11.151)

Dividing (11.151) by (11.148), we obtain

k \cot \left(k a+\delta_{0}\right)-\frac{2 m V_{0}}{\hbar^{2}}=k \cot (k a) \quad \Rightarrow \quad \tan \left(k a+\delta_{0}\right)=\left[\frac{1}{\tan (k a)}+\frac{2 m V_{0}}{k \hbar^{2}}\right]^{-1}.       (11.152)

This equation shows that, when there is no scattering potential, V_{0}=0, the phase shift is zero, since \tan \left(k a+\delta_{0}\right)=\tan (k a). In this case, equations (11.103)

f_{0}=\frac{1}{k} e^{i \delta_{0}} \sin \delta_{0} \quad(l=0),                   (11.103)

and (11.104) imply that the scattering amplitude and the cross sections all vanish.

If the incident particles have small velocities, ka « 1, we have \tan (k a) \simeq k a and \tan (k a+\left.\delta_{0}\right) \simeq \tan \left(\delta_{0}\right). In this case, equation (11.152) yields

\tan \delta_{0} \simeq \frac{k a}{1+2 m V_{0} a / \hbar^{2}} \Rightarrow \sin ^{2} \delta_{0} \simeq \frac{k^{2} a^{2}}{k^{2} a^{2}+\left(1+2 m V_{0} a / \hbar^{2}\right)^{2}}.                (11.153)

Inserting this relation into (11.144), we obtain

\frac{d \sigma}{d \Omega}_{0} \simeq \frac{a^{2}}{k^{2} a^{2}+\left(1+2 m V_{0} a / \hbar^{2}\right)^{2}}, \quad \sigma_{0} \simeq \frac{4 \pi a^{2}}{k^{2} a^{2}+\left(1+2 m V_{0} a / \hbar^{2}\right)^{2}}.            (11.154)

Related Answered Questions