Question 11.P.5: Find the differential and total cross sections in the first ...

Find the differential and total cross sections in the first Born approximation for the elastic scattering of a particle of mass m, which is initially traveling along the z-axis, from a nonspherical, double-delta potential V(r)=V0δ(rak)+V0δ(r+ak)V(\vec{r})=V_{0} \delta(\vec{r}-a \vec{k})+V_{0} \delta(\vec{r}+a \vec{k}), where k\vec{k} is the unit vector along the z-axis.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since V(r)V(\vec{r}) is not spherically symmetric, the differential cross section can be obtained from (11.66):

dσdΩ=f(θ,φ)2=μ24π24eiqrV(r)d3r2\frac{d \sigma}{d \Omega}=|f(\theta, \varphi)|^{2}=\frac{\mu^{2}}{4 \pi^{2} \hbar^{4}}\left|\int e^{i \vec{q} \cdot \vec{r}^{\prime}} V\left(\vec{r}^{\prime}\right) d^{3} r^{\prime}\right|^{2},            (11.66)

 

dσdΩ=m24π24V0[δ(rak)+δ(r+ak)]eiqrd3r2=m2V04π24I2\frac{d \sigma}{d \Omega}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int V_{0}[\delta(\vec{r}-a \vec{k})+\delta(\vec{r}+a \vec{k})] e^{i \vec{q} \cdot \vec{r}} d^{3} r\right|^{2}=\frac{m^{2} V_{0}}{4 \pi^{2} \hbar^{4}}|I|^{2}.                 (11.173)

Since δ(r±ak)=δ(x)δ(y)δ(z±a)\delta(\vec{r} \pm a \vec{k})=\delta(x) \delta(y) \delta(z \pm a) we can write the integral I as

I=δ(x)eixqxdxδ(y)eiyqydy[δ(za)+δ(z+a)]eizqzdzI=\int \delta(x) e^{i x q_{x}} d x \int \delta(y) e^{i y q_{y}} d y \int[\delta(z-a)+\delta(z+a)] e^{i z q_{z}} d z

 

=eiaqz+eiaqz=2cos(aqz)=e^{i a q_{z}}+e^{-i a q_{z}}=2 \cos \left(a q_{z}\right).                  (11.174)

The calculation of qz is somewhat different from that shown in (11.67).

q=k0k=k02+k22kk0cosθ=k2(1cos2θ)=2ksin(θ2)q=\left|\overrightarrow{k_{0}}-\vec{k}\right|=\sqrt{k_{0}^{2}+k^{2}-2 k k_{0} \cos \theta}=k \sqrt{2\left(1-\cos ^{2} \theta\right)}=2 k \sin \left(\frac{\theta}{2}\right).                 (11.67)

Since the incident particle is initially traveling along the z-axis, and since it scatters elastically from the potential V(r)V(\vec{r}), the magnitudes of its momenta before and after collision are equal. So, as shown in Figure 11.8, we have qz=qsin(θ/2)=2ksin2(θ/2)q_{z}=q \sin (\theta / 2)=2 k \sin ^{2}(\theta / 2), since q=k0k=2ksin(θ/2)q=\left|\vec{k}_{0}-\vec{k}\right|=2 k \sin (\theta / 2). Thus, inserting I=2cos(aqz)=2cos[2aksin2(θ/2)]I=2 \cos \left(a q_{z}\right)=2 \cos \left[2 a k \sin ^{2}(\theta / 2)\right] into (11.173), we obtain

dσdΩ=m2V0π24cos2(2aksin2θ2)\frac{d \sigma}{d \Omega}=\frac{m^{2} V_{0}}{\pi^{2} \hbar^{4}} \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right).                (11.175)

The total cross section can be obtained at once from (11.175):

σ=dσdΩsinθdθdφ=2π0πdσdΩsinθdθ\sigma=\int \frac{d \sigma}{d \Omega} \sin \theta d \theta d \varphi=2 \pi \int_{0}^{\pi} \frac{d \sigma}{d \Omega} \sin \theta d \theta

 

=2πm2V0π240πsinθcos2(2aksin2θ2)dθ=2 \pi \frac{m^{2} V_{0}}{\pi^{2} \hbar^{4}} \int_{0}^{\pi} \sin \theta \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right) d \theta,              (11.176)

which, when using the change of variable x=2aksin2(θ/2)x=2 a k \sin ^{2}(\theta / 2) with dx=2aksin(θ/2)cos(θ/2)dθd x=2 a k \sin (\theta / 2) \cos (\theta / 2) d \theta, leads to

σ=2m2V0π40π2sin(θ2)cos(θ2)cos2(2aksin2θ2)dθ\sigma=\frac{2 m^{2} V_{0}}{\pi \hbar^{4}} \int_{0}^{\pi} 2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) \cos ^{2}\left(2 a k \sin ^{2} \frac{\theta}{2}\right) d \theta

 

=2m2V0πak401cos2(x)dx=\frac{2 m^{2} V_{0}}{\pi a k \hbar^{4}} \int_{0}^{1} \cos ^{2}(x) d x

 

=m2V0πak401[1+cos(2x)]dx=\frac{m^{2} V_{0}}{\pi a k \hbar^{4}} \int_{0}^{1}[1+\cos (2 x)] d x

 

=m2V0πak4=\frac{m^{2} V_{0}}{\pi a k \hbar^{4}}.                        (11.177)

figure (11.8)

Related Answered Questions