Find the distance from Q(4, 3) to the line \vec{x} = \left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] + t\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] , t\in \mathbb{R}.
Find the distance from Q(4, 3) to the line \vec{x} = \left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] + t\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] , t\in \mathbb{R}.
We pick the point P(1, 2) on the line. Then, \vec{PQ} = \left [ \begin{matrix} 4-1 \\ 3-2 \end{matrix} \right ] = \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ]. So, the distance is
\left\|perp_{\vec{d} } \left(\vec{PQ} \right) \right\| = \left\|\vec{PQ} – proj_{d}\left(\vec{PQ} \right) \right\|
= \left\|\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] – \left(\frac{-3+1}{1+1} \right)\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\|
= \left\|\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] +\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\| = \left\|\left [ \begin{matrix} 2 \\ 2 \end{matrix} \right ] \right\| = 2\sqrt{2}