Question 1.5.9: Find the distance from Q(4, 3) to the line x = [1 2] + t[-1 ...

Find the distance from Q(4, 3) to the line \vec{x} = \left [ \begin{matrix} 1 \\ 2 \end{matrix} \right ] + t\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] , t\in \mathbb{R}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We pick the point P(1, 2) on the line. Then, \vec{PQ} = \left [ \begin{matrix} 4-1 \\ 3-2 \end{matrix} \right ] = \left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ]. So, the distance is

\left\|perp_{\vec{d} } \left(\vec{PQ} \right) \right\| = \left\|\vec{PQ} – proj_{d}\left(\vec{PQ} \right) \right\|

 

= \left\|\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] – \left(\frac{-3+1}{1+1} \right)\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\|

= \left\|\left [ \begin{matrix} 3 \\ 1 \end{matrix} \right ] +\left [ \begin{matrix} -1 \\ 1 \end{matrix} \right ] \right\| = \left\|\left [ \begin{matrix} 2 \\ 2 \end{matrix} \right ] \right\| = 2\sqrt{2}

1.5.9

Related Answered Questions