Find the electric field a distance z above one end of a straight line segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your formula is consistent with what you would expect for the case z \gg L.
Find the electric field a distance z above one end of a straight line segment of length L (Fig. 2.7) that carries a uniform line charge λ. Check that your formula is consistent with what you would expect for the case z \gg L.
=\frac{1}{4\pi \varepsilon _0} \lambda z\int_{0}^{L}{}\frac{1}{\left(z^{2}+x^{2} \right)^{3/2} }dx
=\frac{1}{4\pi \varepsilon _0} \lambda z\left[\frac{1}{z^2}\frac{x}{\sqrt{z^2+x^{2} } } \right] \mid ^{L}_{0}=\frac{1}{4\pi \varepsilon _0}\frac{\lambda }{Z}\frac{L}{\sqrt{z^2+L^2} } .
E_x=-\frac{1}{4\pi \varepsilon _0} \int_{0}^{L}{} \frac{\lambda dx}{\eta ^2}\sin \theta =-\frac{1}{4\pi \varepsilon _0}\lambda \int{} \frac{xdx}{\left(x^{2}+z^2 \right)^{3/2} }=-\frac{1}{4\pi \varepsilon _0}\lambda \left[-\frac{1}{\sqrt{x^{2}+z^2 } } \right] \mid ^{L}_{0}=-\frac{1}{4\pi \varepsilon _0} \lambda \left[\frac{1}{z}-\frac{1}{\sqrt{z^2+L^2} } \right] .
E =\frac{1}{4\pi \varepsilon _0} \frac{\lambda }{z} \left[\left(-1+\frac{z}{\sqrt{z^2+L^2} } \right)\hat{x}+ \left(\frac{L}{\sqrt{z^2+L^2} } \right)\hat{z} \right] .
For z ≫ L you expect it to look like a point charge q=\lambda L:E\rightarrow \frac{1}{4\pi \varepsilon _0} \frac{\lambda L}{z^2}\hat{z} . It checks, for with z ≫L the \hat{x} term → 0, and the \hat{z} term \rightarrow \frac{1}{4\pi \varepsilon _0}\frac{\lambda }{z}\frac{L}{z}\hat{z} .