Question 4.P.16: Find the energy levels and the wave functions of two harmoni...

Find the energy levels and the wave functions of two harmonic oscillators of masses m1m_{1} and m2 m_{2}, having identical frequencies ω, and coupled by the interaction 12k(X^1X^2)2\frac{1}{2} k(\hat{X}_{1}-\hat{X}_{2} )^{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This problem reduces to finding the eigenvalues for the Hamiltonian

H^=H^1+H^2+12K(X^1X^2)2\hat{H}=\hat{H}_{1}+\hat{H}_{2}+\frac{1}{2}K(\hat{X}_{1}-\hat{X}_{2} )^{2}

 

=12m1P^12+12m1ω2X^12+12m2P^22+12m2ω2X^22+12K(X^1X^2)2=\frac{1}{2m_{1}}\hat{P}^{2}_{1} +\frac{1}{2}m_{1}\omega ^{2} \hat{X}^{2}_{1}+\frac{1}{2m_{2}}\hat{P}^{2}_{2}+\frac{1}{2}m_{2}\omega ^{2} \hat{X}^{2}_{2}+\frac{1}{2}K(\hat{X}_{1}-\hat{X}_{2} )^{2}.            (4.325)

This is a two-particle problem. As in classical mechanics, it is more convenient to describe the dynamics of a two-particle system in terms of the center of mass (CM) and relative motions. For this, let us introduce the following operators:

P^=p^1+p^2\hat{P}=\hat{p}_{1}+\hat{p}_{2},        X^=m1x^1+m2x^2M\hat{X} =\frac{m_{1}\hat{x}_{1}+ m_{2}\hat{x}_{2}}{M},                 (4.326)

 

p^=m2p^1m1p^2M\hat{p}=\frac{m_{2}\hat{p}_{1}- m_{1}\hat{p}_{2}}{M},        x^=x^1x^2\hat{x}=\hat{x}_{1}-\hat{x}_{2},              (4.327)

where M=m1+m2M=m_{1}+m_{2} and μ=m1m2/(m1+m2)\mu =m_{1}m_{2} /(m_{1}+m_{2}) is the reduced mass; P^\hat{P} and X^\hat{X} pertain to the CM; p^\hat{p} and x^\hat{x} pertain to the relative motion. These relations lead to

p^1=m1MP^+p^\hat{p}_{1} =\frac{m_{1}}{M}\hat{P}+\hat{p},     p^2=m2MP^+p^ \hat{p}_{2}=\frac{m_{2}}{M}\hat{P}+\hat{p},           (3.328)

 

x^1=m2Mx^+X^\hat{x}_{1} =\frac{m_{2}}{M}\hat{x}+\hat{X},     x^2=m1Mx^+X^\hat{x}_{2} =-\frac{m_{1}}{M}\hat{x}+\hat{X}.        (4.329)

Note that the sets (X, P) and (x, p) are conjugate variables separately: [X^,P^]=i,[x^,p^]=i=[X^,p^]=[x^,P^]=0[\hat{X},\hat{P}]=i\hbar ,[\hat{x},\hat{p}]=i\hbar =[\hat{X} ,\hat{p}]=[\hat{x},\hat{P}]=0. Taking p^1,p^2,x^1,\hat{p}_{1}, \hat{p}_{2},\hat{x}_{1}, and x^2\hat{x}_{2} of (4.328) and (4.329) and inserting them into (4.325), we obtain

H^=12m1(m1MP^+p^)2+12m1ω2(m2Mx^+X^)2\hat{H}=\frac{1}{2m_{1}} \left(\frac{m_{1}}{M}\hat{P} +\hat{p} \right) ^{2} +\frac{1}{2}m_{1}\omega ^{2} \left(\frac {m_{2}}{M}\hat{x}+\hat{X} \right) ^{2}

 

+12m2(m2MP^p^)2+12m2ω2(m1Mx^+X^)2+12Kx^2+\frac{1}{2m_{2}}\left(\frac{m_{2}}{M}\hat{P}-\hat{p} \right) ^{2}+\frac{1}{2}m_{2}\omega ^{2}\left(-\frac{m_{1}}{M}\hat{x} +\hat{X} \right) ^{2}+\frac{1}{2}K\hat{x}^{2}

 

=H^CM+H^rel =\hat{H}_{CM}+\hat{H}_{rel},                         (4.330)

where

H^CM=12MP^2+12Mω2X^2\hat{H}_{CM}=\frac{1}{2M}\hat{P}^{2} +\frac{1}{2}M\omega ^{2}\hat{X}^{2},     H^rel=12μp^2+12μΩ2x^2\hat{H}_{rel}=\frac{1}{2\mu } \hat {p}^{2} +\frac{1}{2}\mu \Omega ^{2}\hat{x}^{2},        (4.331)

with Ω2=ω2+k/μ\Omega ^{2}=\omega ^{2}+k/\mu. We have thus reduced the Hamiltonian of these two coupled harmonic oscillators to the sum of two independent harmonic oscillators, one with frequency ω and mass M and the other of mass μ and frequency Ω=ω2+k/μ\Omega =\sqrt{\omega ^{2}+k/\mu}. That is, by introducing the
CM and relative motion variables, we have managed to eliminate the coupled term from the Hamiltonian.
The energy levels of this two-oscillator system can be inferred at once from the suggestive Hamiltonians of (4.331):

En1n2=ω(n1+12)+Ω(n2+12)E_{n_{1}n_{2}} =\hbar \omega \left(n_{1}+\frac{1}{2}\right) +\hbar \Omega \left(n_{2}+\frac{1}{2}\right).          (4.332)

The states of this two-particle system are given by the product of the two states N=n1n2 |N〉=|n_{1}〉 |n_{2}〉; hence the total wave function, ψn(X,x)\psi _{n} (X,x), is equal to the product of the center of mass wave function, ψn1(X)\psi _{n_{1}} (X), and the wave function of the relative motion, ψn2(x):ψn(X,x)=ψn1(X)ψn2(x)\psi _{n_{2}} (x):\psi _{n} (X,x)=\psi _{n_{1}} (X)\psi _{n_{2}} (x).

Note that both of these wave functions are harmonic oscillator functions whose forms can be found in (4.172):

ψn(X,x)=1π2n12n2n1!n2!x01x02eX2/2x012ex2/2x022Hn1(Xx01)Hn2(Xx02)\psi _{n} (X,x)=\frac{1}{\sqrt{\pi }\sqrt{2^{n_{1}}2^{n_{2}} n_{1}!n_{2}!x_{0_{1} }x_{0_{2} } } } e^{-X^{2}/2x^{2}_{0_{1} } }e^{-x^{2}/2x^{2}_{0_{2} } } H_{n_{1}} \left(\frac{X}{x_{0_{1} } } \right) H_{n_{2}} \left(\frac{X}{x_{0_{2} } } \right),       (4.333)

where n=(n1,n2),x01=/(Mω)n=(n_{1},n_{2}),x_{0_{1} }=\sqrt{\hbar /(M\omega )} , and x02=/(μΩ)x_{0_{2} }=\sqrt{\hbar /(\mu \Omega )} .

Related Answered Questions