Find the energy of a uniformly charged spherical shell of total charge q and radius R.
Find the energy of a uniformly charged spherical shell of total charge q and radius R.
1
Use Eq. 2.43, in the version appropriate to surface charges:
W=\frac{1}{2}\int{\rho Vd\tau }. (2.43)
W=\frac{1}{2}\int{\sigma Vd a}.Now, the potential at the surface of this sphere is (1/4\pi \epsilon _{0})q/R (a constant—Ex. 2.7), so
W=\frac{1}{8\pi \epsilon _{0}} \frac{q}{R}\int{\sigma da} = \frac{1}{8\pi \epsilon _{0}} \frac{q^{2}}{R}2
Use Eq. 2.45. Inside the sphere, E = 0; outside,
W=\frac{\epsilon _{0}}{2}\int{E^{2}d\tau } (all space). (2.45)
E=\frac{1}{4\pi \epsilon _{0}}\frac{q}{r^{2}}\hat{r}, so E^{2}=\frac{q^{2}}{\left(4\pi \epsilon _{0}\right)^{2}r^{4} },
Therefore,
W_{tot}=\frac{\epsilon _{0}}{2\left(4\pi \epsilon _{0}\right)^{2} }\int\limits_{outside}^{}{} {\left(\frac{q^{2}}{r^{4}} \right)\left(r^{2}\sin \theta drd\theta d\phi \right) }=\frac{1}{32\pi ^{2}\epsilon _{0}}q^{2}4\pi \int_{R}^{\infty }{\frac{1}{r^{2}}dr }=\frac{1}{8\pi \epsilon _{0}}\frac{q^{2}}{R}