Question 2.9: Find the energy of a uniformly charged spherical shell of to...

Find the energy of a uniformly charged spherical shell of total charge q and radius R.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1

Use Eq. 2.43, in the version appropriate to surface charges:

W=\frac{1}{2}\int{\rho Vd\tau }.       (2.43)

W=\frac{1}{2}\int{\sigma Vd a}.

Now, the potential at the surface of this sphere is  (1/4\pi \epsilon _{0})q/R  (a constant—Ex. 2.7), so

W=\frac{1}{8\pi \epsilon _{0}} \frac{q}{R}\int{\sigma da} = \frac{1}{8\pi \epsilon _{0}} \frac{q^{2}}{R}

 2

Use Eq. 2.45. Inside the sphere, E = 0; outside,

W=\frac{\epsilon _{0}}{2}\int{E^{2}d\tau }     (all space).       (2.45)

E=\frac{1}{4\pi \epsilon _{0}}\frac{q}{r^{2}}\hat{r}, so      E^{2}=\frac{q^{2}}{\left(4\pi \epsilon _{0}\right)^{2}r^{4} },

Therefore,

W_{tot}=\frac{\epsilon _{0}}{2\left(4\pi \epsilon _{0}\right)^{2} }\int\limits_{outside}^{}{} {\left(\frac{q^{2}}{r^{4}} \right)\left(r^{2}\sin \theta drd\theta d\phi \right) }

 

=\frac{1}{32\pi ^{2}\epsilon _{0}}q^{2}4\pi \int_{R}^{\infty }{\frac{1}{r^{2}}dr }=\frac{1}{8\pi \epsilon _{0}}\frac{q^{2}}{R}

Related Answered Questions