Find the general solution of the homogeneous system
2x_{1} + x_{2} \ \ \ \ \ \ \ \ = 0 \\ x_{1} + x_{2} - x_{3} = 0 \\ \ \ \ \ -x_{2} + 2x_{3} = 0
Find the general solution of the homogeneous system
2x_{1} + x_{2} \ \ \ \ \ \ \ \ = 0 \\ x_{1} + x_{2} - x_{3} = 0 \\ \ \ \ \ -x_{2} + 2x_{3} = 0
We row reduce the coefficient matrix of the system to RREF:
\left [ \begin{matrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} R_{1} – R_{2} \\ \\ \\ \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} \\ R_{2} – R_{1} \\ \\ \end{matrix} \thicksim \\ \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} + R_{2} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{matrix} \right ]
This corresponds to the homogeneous system
x_{1} \ \ \ \ \ \ \ \ + x_{3} = 0 \\ \ \ \ \ \ x_{2} – 2x_{3} =0
Hence, x_{3} is a free variable, so we let x_{3} = t \in \mathbb{R}. Then . x_{1} = -x_{3} = -t, x_{2} = 2x_{3} = 2t, and the general solution is
\left [ \begin{matrix} x_{1} \\ x_{2} \\ x_{3} \end{matrix} \right ] = \left [ \begin{matrix} -t \\ 2t \\ t \end{matrix} \right ] = t\left [ \begin{matrix} -1 \\ 2 \\ 1 \end{matrix} \right ] , \ \ \ \ \ t \in \mathbb{R}