Question 2.2.9: Find the general solution of the homogeneous system 2x1 + x2...

Find the general solution of the homogeneous system

2x_{1} + x_{2} \ \ \ \ \ \ \ \ = 0 \\  x_{1} + x_{2} - x_{3} = 0 \\  \ \ \ \ -x_{2} + 2x_{3} = 0

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We row reduce the coefficient matrix of the system to RREF:

\left [ \begin{matrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} R_{1} – R_{2} \\ \\ \\ \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} \\ R_{2} – R_{1} \\ \\ \end{matrix} \thicksim \\ \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & -1 & 2 \end{matrix} \right ] \begin{matrix} \\ \\R_{3} + R_{2} \end{matrix} \thicksim \left [ \begin{matrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{matrix} \right ]

This corresponds to the homogeneous system

x_{1} \ \ \ \ \ \ \ \ + x_{3} = 0 \\  \ \ \ \ \ x_{2}  –  2x_{3} =0

Hence, x_{3} is a free variable, so we let x_{3} = t \in \mathbb{R}. Then . x_{1} = -x_{3} = -t, x_{2} = 2x_{3} = 2t, and the general solution is

\left [ \begin{matrix} x_{1} \\ x_{2} \\ x_{3} \end{matrix} \right ] = \left [ \begin{matrix} -t \\ 2t \\ t \end{matrix} \right ] = t\left [ \begin{matrix} -1 \\ 2 \\ 1 \end{matrix} \right ] , \ \ \ \ \ t \in \mathbb{R}

Related Answered Questions

We use Kirchhoff’s Voltage Law on each of the four...