Question 3.7.1: Find the general solution of the nonhomogeneous system given...

Find the general solution of the nonhomogeneous system given by

\acute{x}=\begin{bmatrix} 2&-1 \\ 3& -2 \end{bmatrix} x +\begin{bmatrix}0 \\ 4\end{bmatrix}t

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From our determination of the eigenvalues and eigenvectors of the same coefficient matrix in example 3.6.2, the complementary solution is

x_{h} = c_{1}e^{−t}\begin{bmatrix}1 \\ 3\end{bmatrix} c_{2}e^{t}\begin{bmatrix}1 \\ 1\end{bmatrix}

Therefore, the fundamental matrix is

Φ(t ) =\begin{bmatrix}e^{−t} &e^{t} \\ 3e^{−t}&e^{t}\end{bmatrix}

According to (3.7.10), we next need to compute Φ^{−1}. While the inverse of this matrix of functions may be computed by row-reducing [ Φ| I] in the usual way, because of the function coefficients in Φ it is much easier to use a shortcut for computing the inverse of a 2× 2 matrix that we established in exercise 19 of section 1.9. Specifically, if

A =\begin{bmatrix} a&b\\ c& d \end{bmatrix}

is an invertible matrix, then

A^{−1} = \frac {1}{det(A)} \begin{bmatrix} d&-b\\ -c&a \end{bmatrix}

Here, since det(Φ) = e^{−t} e^{t} −3e^{−t} e^{t} =−2, it follows

Φ^{−1}=-\frac {1}{2} \begin{bmatrix}e^{t} &-e^{t} \\ -3e^{−t}&e^{-t}\end{bmatrix}

Thus, by (3.7.10), we now have

x_{p}(t ) = Φ(t) \int {Φ^{−1}(t)b(t ) dt}         (3.7.10)

=\begin{bmatrix}e^{−t} &e^{t} \\ 3e^{−t}&e^{t}\end{bmatrix} \int { \begin{bmatrix}-\frac {1}{2}e^{t} &-\frac {1}{2}-e^{t} \\ \frac {3}{2}e^{−t}&-\frac {1}{2}e^{-t}\end{bmatrix} \begin{bmatrix} 0\\ 4t \end{bmatrix}dt}

=\begin{bmatrix}e^{−t} &e^{t} \\ 3e^{−t}&e^{t}\end{bmatrix}\int {\begin{bmatrix} 2te^{t}\\ 2te^{−t}\end{bmatrix}dt}

Integrating the vector function component-wise by parts and computing the subsequent matrix product,

x_{p}(t )=\begin{bmatrix}e^{−t} &e^{t} \\ 3e^{−t}&e^{t}\end{bmatrix} \begin{bmatrix} 2(t-1)e^{t}\\ 2(t+1)e^{−t}\end{bmatrix}

=\begin{bmatrix} 2(t −1)+2(t +1)\\ 6(t −1)+2(t +1)\end{bmatrix}

=\begin{bmatrix} 4t\\ 8t −4\end{bmatrix}

Therefore, the general solution to the original nonhomogeneous system is

x = x_{h} +x_{p} = c_{1}e^{−t}\begin{bmatrix}1 \\ 3\end{bmatrix} c_{2}e^{t}\begin{bmatrix}1 \\ 1\end{bmatrix} + \begin{bmatrix} 4t\\ 8t −4\end{bmatrix}

 

Related Answered Questions

he eigenvalues of the matrix A are computed using ...