Question 3.7.2: Find the general solution of the nonhomogeneous system given...

Find the general solution of the nonhomogeneous system given by

\acute{x} =\begin{bmatrix} 2 & -1 \\ 3 &-2 \end{bmatrix} x +\begin{bmatrix} 1/(e^{t} +1) \\1 \end{bmatrix}

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first find x_{h}. By finding the eigenvalues and eigenvectors of the coefficient matrix A, it is straightforward to show that

x_{h} = c_{1}e^{−t} \begin{bmatrix} 1\\3 \end{bmatrix} +c_{2}e^{t} \begin{bmatrix} 1\\1 \end{bmatrix}

Therefore, the fundamental solution matrix is

Φ(t) =\begin{bmatrix} e^{−t}&e^{t}\\3e^{−t}&e^{t} \end{bmatrix}

Moreover, we can show that

Φ(t)^{-1}=-\frac {1}{2}  \begin{bmatrix} e^{t}&-e^{t}\\-3e^{−t}&e^{-t} \end{bmatrix}

We are now ready to compute x_{p} and write

x_{p}(t ) =Φ(t) \int {(t)^{-1} b(t ) dt}
=\begin{bmatrix} e^{−t}&e^{t}\\3e^{−t}&e^{t} \end{bmatrix} \int {-\frac {1}{2}  \begin{bmatrix} e^{t}&-e^{t}\\-3e^{−t}&e^{-t} \end{bmatrix} \begin{bmatrix} 1/(e^{t} +1)\\1 \end{bmatrix} dt }

=\begin{bmatrix} e^{−t}&e^{t}\\3e^{−t}&e^{t} \end{bmatrix} \int { \begin{bmatrix} \frac {1}{2} \frac {e^{2t}}{e^{t}+1}\\\frac {1}{2} \frac {2e^{-t}-1}{e^{t}+1}\end{bmatrix} dt}

At this point, it is easiest to use a computer algebra system to integrate and complete our calculation of x_{p}. Doing so, and then finding the required matrix product, we have

x_{p}(t )=\begin{bmatrix} e^{−t}&e^{t}\\3e^{−t}&e^{t} \end{bmatrix} \begin{bmatrix} \frac {1}{2}e^{t} − \frac {1}{2}ln(e^{t}+1)\\−e^{−t} − \frac {3}{2}t +\frac {3}{2} ln(e^{t}+1)\end{bmatrix}

=\begin{bmatrix} −\frac {1}{2}− \frac {1}{2}e^{−t} ln(e^{t}+1)−\frac {3}{2}te^{t} +\frac {3}{2} e^{t} ln(e^{t} +1)\\\frac {1}{2}− \frac {3}{2}e^{−t} ln(e^{t} +1)− \frac {3}{2}te^{t} + \frac {3}{2}e^{t} ln(e^{t} +1)\end{bmatrix}

Hence, the general solution to the given nonhomogeneous system is

x = x_{h} +x_{p} = c_{1}e^{−t}\begin{bmatrix} 1\\3 \end{bmatrix} +c_{2}e^{t} \begin{bmatrix} 1\\1 \end{bmatrix} +\begin{bmatrix} −\frac {1}{2}− \frac {1}{2}e^{−t} ln(e^{t}+1)−\frac {3}{2}te^{t} +\frac {3}{2} e^{t} ln(e^{t} +1)\\\frac {1}{2}− \frac {3}{2}e^{−t} ln(e^{t} +1)− \frac {3}{2}te^{t} + \frac {3}{2}e^{t} ln(e^{t} +1)\end{bmatrix}

Related Answered Questions

From our determination of the eigenvalues and eige...
he eigenvalues of the matrix A are computed using ...