Find the general solution of the system
\begin{aligned}&x^{\prime}=4 x+y, \\&y^{\prime}=-8 x+8 y .\quad\quad\quad\quad\quad (12)\end{aligned}Find the general solution of the system
\begin{aligned}&x^{\prime}=4 x+y, \\&y^{\prime}=-8 x+8 y .\quad\quad\quad\quad\quad (12)\end{aligned}Here
D=\left|\begin{array}{cc}4-\lambda & 1 \\-8 & 8-\lambda\end{array}\right|=\lambda^{2}-12 \lambda+40=0.
The roots of the characteristic equation are \lambda_{1}=6+2 i and \lambda_{2}=6-2 i, so that Theorem 3 yields the linearly independent solutions
\begin{aligned}&\left(x_{1}(t), y_{1}(t)\right)=\left(e^{a t}\left(A_{1} \cos b t-A_{2} \sin b t\right), e^{a t}\left(B_{1} \cos b t-B_{2} \sin b t\right)\right) \\&\left(x_{2}(t), y_{2}(t)\right)=\left(e^{a t}\left(A_{1} \sin b t+A_{2} \cos b t\right), e^{a t}\left(B_{1} \sin b t+B_{2} \cos b t\right)\right)\end{aligned}\begin{aligned}&\left(x_{1}(t), y_{1}(t)\right)=\left(e^{6 t}\left(A_{1} \cos 2 t-A_{2} \sin 2 t\right), e^{6 t}\left(B_{1} \cos 2 t-B_{2} \sin 2 t\right)\right) \\&\left(x_{2}(t), y_{2}(t)\right)=\left(e^{6 t}\left(A_{1} \sin 2 t+A_{2} \cos 2 t\right), e^{6 t}\left(B_{1} \sin 2 t-B_{2} \cos 2 t\right)\right)\end{aligned}
Substituting the first equation into system (12) yields, after a great deal of algebra, the system of equations
\begin{aligned}\left(2 A_{1}-2 A_{2}-B_{1}\right) \cos 2 t-\left(2 A_{1}+2 A_{2}-B_{2}\right) \sin 2 t &=0 \\\left(8 A_{1}-2 B_{1}-2 B_{2}\right) \cos 2 t-\left(8 A_{2}+2 B_{1}-2 B_{2}\right) \sin 2 t &=0\end{aligned}Since t is arbitrary and the functions \sin 2 t and \cos 2 t are linearly independent, the terms in parentheses must all vanish. A choice of values that will accomplish this is A_{1}=1, A_{2}=\frac{1}{2}, B_{1}=1, and B_{2}=3. Thus two linearly independent solutions to system (12) are \left(e^{6 t}\left(\cos 2 t-\frac{1}{2} \sin 2 t\right), e^{6 t}(\cos 2 t-3 \sin 2 t)\right) and \left(e^{6 t}\left(\sin 2 t+\frac{1}{2} \cos 2 t\right),\right., \left.e^{6 t}(\sin 2 t+3 \cos 2 t)\right). The general solution of system (12) is a linear combination of these two solutions.