Question 12.3.2: Find the general solution of the system x' = -4x - y, y' = x...

Find the general solution of the system

\begin{aligned}&x^{\prime}=-4 x-y, \\&y^{\prime}=x-2 y .\quad\quad\quad\quad\quad (7)\end{aligned}
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation (3) is

\begin{aligned}D &=\left|\begin{array}{ll}a_{11}-\lambda & a_{12} \\a_{21} & a_{22}-\lambda\end{array}\right| \\&=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{21} a_{12}\end{aligned}

 

D=\left|\begin{array}{cc}-4-\lambda & -1 \\1 & -2-\lambda\end{array}\right|=(\lambda+4)(\lambda+2)+1=\lambda^{2}+6 \lambda+9=0

which has the double root \lambda_{1}=\lambda_{2}=-3. From system (2), with \lambda=-3, we find that

\begin{aligned}&\left(a_{11}-\lambda\right) \alpha+a_{12} \beta=0 \\&a_{21} \alpha+\left(a_{22}-\lambda\right) \beta=0\end{aligned}

 

\begin{array}{r}-\alpha_{1}-\beta_{1}=0, \\\alpha_{1}+\beta_{1}=0 .\end{array}

A nontrivial solution is \alpha_{1}=1, \beta_{1}=-1, yielding the solution \left(e^{-31},-e^{-31}\right).
If we try to find a solution of the form \left(\alpha_{2} t e^{-3 t}, \beta_{2} t e^{-3 t}\right) we immediately run into trouble, since the derivatives on the left-hand side of system (7) produce terms of the form c e^{-3 t} not present on the right-hand side of (7). This explains why we must seek a solution of the form

\left(\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t},\left(\beta_{2}+\beta_{3} t\right) e^{-3 t}\right)\quad\quad\quad\quad\quad (8).

Substituting the pair (8) into system (7), we obtain

\begin{aligned}&e^{-3 t}\left(\alpha_{3}-3 \alpha_{2}-3 \alpha_{3} t\right)=-4\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t}-\left(\beta_{2}+\beta_{3} t\right) e^{-3 t} \\&e^{-3 t}\left(\beta_{3}-3 \beta_{2}-3 \beta_{3} t\right)=\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t}-2\left(\beta_{2}+\beta_{3} t\right) e^{-3 t}\end{aligned}

Dividing by e^{-3 t} and equating constant terms and coefficients of t, we obtain the system of equations

\begin{aligned}\alpha_{3}-3 \alpha_{2} &=-4 \alpha_{2}-\beta_{2} \\-3 \alpha_{3} &=-4 \alpha_{3}-\beta_{3} \\\beta_{3}-3 \beta_{2} &=\alpha_{2}-2 \beta_{2} \\-3 \beta_{3} &=\alpha_{3}-2 \beta_{3}\end{aligned}

One solution is \alpha_{2}=1, \beta_{2}=-2, \alpha_{3}=1, \beta_{3}=-1. Thus a second solution of system (7) is \left((1+t) e^{-3 t},(-2-t) e^{-3 t}\right). It is easy to verify that the two solutions are linearly independent, since W(t)=-e^{-6 t}.

Related Answered Questions

Differentiating the first equation and substitutin...