Find the general solution of the system
\begin{aligned}&x^{\prime}=-4 x-y, \\&y^{\prime}=x-2 y .\quad\quad\quad\quad\quad (7)\end{aligned}Find the general solution of the system
\begin{aligned}&x^{\prime}=-4 x-y, \\&y^{\prime}=x-2 y .\quad\quad\quad\quad\quad (7)\end{aligned}Equation (3) is
\begin{aligned}D &=\left|\begin{array}{ll}a_{11}-\lambda & a_{12} \\a_{21} & a_{22}-\lambda\end{array}\right| \\&=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right)-a_{21} a_{12}\end{aligned}D=\left|\begin{array}{cc}-4-\lambda & -1 \\1 & -2-\lambda\end{array}\right|=(\lambda+4)(\lambda+2)+1=\lambda^{2}+6 \lambda+9=0
which has the double root \lambda_{1}=\lambda_{2}=-3. From system (2), with \lambda=-3, we find that
\begin{aligned}&\left(a_{11}-\lambda\right) \alpha+a_{12} \beta=0 \\&a_{21} \alpha+\left(a_{22}-\lambda\right) \beta=0\end{aligned}\begin{array}{r}-\alpha_{1}-\beta_{1}=0, \\\alpha_{1}+\beta_{1}=0 .\end{array}
A nontrivial solution is \alpha_{1}=1, \beta_{1}=-1, yielding the solution \left(e^{-31},-e^{-31}\right).
If we try to find a solution of the form \left(\alpha_{2} t e^{-3 t}, \beta_{2} t e^{-3 t}\right) we immediately run into trouble, since the derivatives on the left-hand side of system (7) produce terms of the form c e^{-3 t} not present on the right-hand side of (7). This explains why we must seek a solution of the form
\left(\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t},\left(\beta_{2}+\beta_{3} t\right) e^{-3 t}\right)\quad\quad\quad\quad\quad (8).
Substituting the pair (8) into system (7), we obtain
\begin{aligned}&e^{-3 t}\left(\alpha_{3}-3 \alpha_{2}-3 \alpha_{3} t\right)=-4\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t}-\left(\beta_{2}+\beta_{3} t\right) e^{-3 t} \\&e^{-3 t}\left(\beta_{3}-3 \beta_{2}-3 \beta_{3} t\right)=\left(\alpha_{2}+\alpha_{3} t\right) e^{-3 t}-2\left(\beta_{2}+\beta_{3} t\right) e^{-3 t}\end{aligned}Dividing by e^{-3 t} and equating constant terms and coefficients of t, we obtain the system of equations
\begin{aligned}\alpha_{3}-3 \alpha_{2} &=-4 \alpha_{2}-\beta_{2} \\-3 \alpha_{3} &=-4 \alpha_{3}-\beta_{3} \\\beta_{3}-3 \beta_{2} &=\alpha_{2}-2 \beta_{2} \\-3 \beta_{3} &=\alpha_{3}-2 \beta_{3}\end{aligned}One solution is \alpha_{2}=1, \beta_{2}=-2, \alpha_{3}=1, \beta_{3}=-1. Thus a second solution of system (7) is \left((1+t) e^{-3 t},(-2-t) e^{-3 t}\right). It is easy to verify that the two solutions are linearly independent, since W(t)=-e^{-6 t}.