Find the general solution to
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=\sqrt{x} \quad\quad\quad\quad\quad (9).
Find the general solution to
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=\sqrt{x} \quad\quad\quad\quad\quad (9).
In Example 1 we found the homogeneous solutions
y_{1}=x^{-4} \quad \text { and } \quad y_{2}=x^{3}.
Then
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}x^{-4} & x^{3} \\-4 x^{-5} & 3 x^{2}\end{array}\right|=3 x^{-2}+4 x^{-2}=\frac{7}{x^{2}} \text { and } \frac{1}{W}=\frac{x^{2}}{7}We rewrite (9) in the standard form:
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{12}{x^{2}} y=x^{-3 / 2}This is the form for which the variation of constants formulas, formulas (7) and (8), on page 684 apply. Then f(x)=x^{-3 / 2}, and we obtain
\begin{aligned}&c_{1}^{\prime}(x)=\frac{-f(x) y_{2}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)}=\frac{-f(x) y_{2}(x)}{W\left(y_{1}, y_{2}\right)(x)} \\&c_{2}^{\prime}(x)=\frac{f(x) y_{1}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)}=\frac{f(x) y_{1}(x)}{W\left(y_{1}, y_{2}\right)(x)}\end{aligned}c_{1}^{\prime}(x)=\frac{-f(x) y_{2}(x)}{W\left(y_{1}, y_{2}\right)(x)}=\frac{x^{2}}{7}\left(-x^{-3 / 2}\right)\left(x^{3}\right)=\frac{-x^{7 / 2}}{7}
and
c_{2}^{\prime}(x)=\frac{f(x) y_{1}(x)}{W\left(y_{1}, y_{2}\right)(x)}=\frac{x^{2}}{7}\left(x^{-3 / 2}\right)\left(x^{-4}\right)=\frac{1}{7} x^{-7 / 2}Hence
c_{1}(x)=-\frac{1}{7} \cdot \frac{2}{9} x^{9 / 2}, \quad c_{2}(x)=-\frac{1}{7} \cdot \frac{2}{5} x^{-5 / 2}so that
\begin{aligned}y_{p}(x) &=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)=-\frac{1}{7}\left[\frac{2}{9} x^{9 / 2} \cdot x^{-4}+\frac{2}{5} x^{-5 / 2} \cdot x^{3}\right] \\&=\frac{-x^{1 / 2}}{7}\left(\frac{2}{9}+\frac{2}{5}\right)=-\frac{4}{45} x^{1 / 2}\end{aligned}Thus the general solution is given by
y(x)=c_{1} x^{-4}+c_{2} x^{3}-\frac{4}{45} x^{1 / 2}