Question 11.12.4: Find the general solution to x^2y" + 2xy' - 12y = √x.

Find the general solution to

x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=\sqrt{x} \quad\quad\quad\quad\quad (9).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In Example 1 we found the homogeneous solutions

y_{1}=x^{-4} \quad \text { and } \quad y_{2}=x^{3}.

Then

W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}x^{-4} & x^{3} \\-4 x^{-5} & 3 x^{2}\end{array}\right|=3 x^{-2}+4 x^{-2}=\frac{7}{x^{2}} \text { and } \frac{1}{W}=\frac{x^{2}}{7}

We rewrite (9) in the standard form:

y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{12}{x^{2}} y=x^{-3 / 2}

This is the form for which the variation of constants formulas, formulas (7) and (8), on page 684 apply. Then f(x)=x^{-3 / 2}, and we obtain

\begin{aligned}&c_{1}^{\prime}(x)=\frac{-f(x) y_{2}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)}=\frac{-f(x) y_{2}(x)}{W\left(y_{1}, y_{2}\right)(x)} \\&c_{2}^{\prime}(x)=\frac{f(x) y_{1}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)}=\frac{f(x) y_{1}(x)}{W\left(y_{1}, y_{2}\right)(x)}\end{aligned}

 

c_{1}^{\prime}(x)=\frac{-f(x) y_{2}(x)}{W\left(y_{1}, y_{2}\right)(x)}=\frac{x^{2}}{7}\left(-x^{-3 / 2}\right)\left(x^{3}\right)=\frac{-x^{7 / 2}}{7}

and

c_{2}^{\prime}(x)=\frac{f(x) y_{1}(x)}{W\left(y_{1}, y_{2}\right)(x)}=\frac{x^{2}}{7}\left(x^{-3 / 2}\right)\left(x^{-4}\right)=\frac{1}{7} x^{-7 / 2}

Hence

c_{1}(x)=-\frac{1}{7} \cdot \frac{2}{9} x^{9 / 2}, \quad c_{2}(x)=-\frac{1}{7} \cdot \frac{2}{5} x^{-5 / 2}

so that

\begin{aligned}y_{p}(x) &=c_{1}(x) y_{1}(x)+c_{2}(x) y_{2}(x)=-\frac{1}{7}\left[\frac{2}{9} x^{9 / 2} \cdot x^{-4}+\frac{2}{5} x^{-5 / 2} \cdot x^{3}\right] \\&=\frac{-x^{1 / 2}}{7}\left(\frac{2}{9}+\frac{2}{5}\right)=-\frac{4}{45} x^{1 / 2}\end{aligned}

Thus the general solution is given by

y(x)=c_{1} x^{-4}+c_{2} x^{3}-\frac{4}{45} x^{1 / 2}

Related Answered Questions

We wish to find y(1) by approximati...
We do this in three steps, starting with the graph...
The characteristic equation is \lambda^{2}+...
The characteristic equation is \lambda^{2}-...
The characteristic equation is \lambda(\lam...