Find the general solution to
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \quad\quad\quad\quad\quad (6).
Find the general solution to
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \quad\quad\quad\quad\quad (6).
The characteristic equation is
\lambda^{2}-4 \lambda+4=(\lambda-2)^{2}=0with the single root \lambda=2. Thus one solution is y_{1}(x)=x^{2}. To find a second solution, we use formula (8) on page 667. First, we write (6) in the form
y_{2}=v y_{1}=y_{1}(x) \int \frac{e^{-\int a(x) d x}}{y_{1}^{2}(x)} d x
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 .
As in Section 11.7, a(x)=-\frac{3}{x} so that
e^{-\int a(x) d x}=e^{\int 3 / x d x}=e^{3 \ln x}=x^{3}and
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int a(x) d x}}{y_{1}^{2}(x)} d x=x^{2} \int \frac{x^{3}}{x^{4}} d x=x^{2} \ln x.
Thus the general solution to equation (6) is
y(x)=c_{1} x^{2}+c_{2} x^{2} \ln x=x^{2}\left(c_{1}+c_{2} \ln x\right).