Question 3.6.3: Find the inverse of each of the following elementary matrice...

Find the inverse of each of the following elementary matrices. Check your answer by multiplying the matrices together.

(a) \ \ E_{1} = \left [ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix} \right ] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (b) \ \ E_{2} = \left [ \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right ] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \     (c) \ \ E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{matrix} \right ]
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The inverse matrix E_{1} ^ {-1} is the elementary matrix associated with the row operation required to bring E_{1} back to I. That is, R_{1} – 2R_{2}. Therefore,

E_{1} ^ {-1} = \left [ \begin{matrix} 1 & -2 \\ 0 & 1 \end{matrix} \right ]

Checking, we get E_{1} ^ {-1} E_{1} = \left [ \begin{matrix} 1 & -2 \\ 0 & 1 \end{matrix} \right ] \left [ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right ] .

The inverse matrix E_{2} ^ {-1} is the elementary matrix associated with the row operation required to bring E_{2} back to I. That is,

R_{1} \updownarrow R_{3}. Therefore,

E_{2} ^ {-1} = \left [ \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right ]

Checking, we get E_{2} ^ {-1} E_{2} = \left [ \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right ]\left [ \begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ].

The inverse matrix E_{3} ^ {-1} is the elementary matrix associated with the row operation required to bring E_{3} back to I. That is, ({-1}/{3}) R_{3}. Therefore,

E_{3} ^ {-1} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/3 \end{matrix} \right ]

Checking, we get E_{3} ^ {-1} E_{3} = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/3 \end{matrix} \right ] \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{matrix} \right ] = \left [ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right ] .

 

 

Related Answered Questions

Taking dot products of the rows of the first matri...
Row reducing and keeping track of our row operatio...
By row reducing, we get \left [ \begin{matr...