Question 6.P.5: Find the l = 0 energy and wave function of a particle of mas...

Find the l = 0 energy and wave function of a particle of mass m that is subject to the following central potential V(r)=\begin{cases} 0, & a<r<b, \\ \infty , & elsewhere.\end{cases}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This particle moves between two concentric, hard spheres of radii r = a and r = b. The l = 0 radial equation between a < r < b can be obtained from (6.57):

-\frac{\hbar ^{2} }{2M} \frac{d^{2}U_{nl}(r) }{dr^{2} } +V_{eff} (r)U_{nl}(r)=E_{n} U_{nl}(r)                      (6.57)

 

\frac{d^{2} U_{n0}(r) }{dr^{2} } +k^{2} U_{n0}(r)=0,                  (6.252)

where U_{n0}(r)=rR_{n0}(r) and k^{2}=2mE/\hbar ^{2} . Since the solutions of this equation must satisfy the condition U_{n0}(a)=0, we may write

U_{n0}(r)=A\sin [k(r-a)];                                        (6.253)

the radial wave function is zero elsewhere, i.e.,U_{n0}(r)=0 for 0 < r < a and r > b.

Moreover, since the radial function must vanish at r = b, U_{n0}(b)=0, we have

A\sin [k(b-a)]=0\Longrightarrow k(b-a)=n\pi,                  n=1, 2, 3, ….              (6.254)

Coupled with the fact that k^{2}=2mE/(\hbar ^{2}), this condition leads to the energy

E_{n} =\frac{\hbar ^{2}k^{2}}{2m} =\frac{\pi ^{2} \hbar ^{2}}{2m(a-b)^{2} } ,                      n=1, 2, 3, ….                       (6.255)

We can normalize the radial function (6.253) to obtain the constant A:

1=∫^{b}_{a} r^{2}R^{2}_{n0} (r)dr=∫^{b}_{a}U^{2}_{n0}(r)dr=A^{2} ∫^{b}_{a}\sin ^{2} [k(r-a)]dr

 

=\frac{A^{2}}{2} ∫^{b}_{a}\left\{1-\cos [2k(r-a)]\right\} dr=\frac{b-a}{2} A^{2};                                (6.256)

hence A=\sqrt{2/(b-a)}. Since k_{n} =n\pi /(b-a) the normalized radial function is given by

R_{n0}(r)=\frac{1}{r} U_{n0}(r)=\begin{cases} \sqrt{\frac{2}{b-a} } \frac{1}{r}\sin \left[\frac{n\pi (r-a)}{b-a} \right] , & a<r<b, \\ 0, & elsewhere.\end{cases}                   (6.257)

To obtain the total wave function \psi _{nlm} (\vec{r}), we need simply to divide the radial function by a 1/\sqrt{4\pi } factor, because in this case of l = 0 the wave function \psi _{n00} (r) depends on no angular degrees of freedom, it depends only on the radius:

\psi _{n00} (r)=\frac{1}{\sqrt{4\pi } } R_{n0}(r)=\begin{cases} \sqrt{\frac{2}{4\pi (b-a)} } \frac{1}{r}\sin \left[\frac{n\pi (r-a)}{b-a} \right] , & a<r<b, \\ 0, & elsewhere.\end{cases}                       (6.258)

Related Answered Questions