Find the magnetic field a distance s from a long straight wire (Fig. 5.32), carrying a steady current I (the same problem we solved in Ex. 5.5, using the Biot-Savart law).
Find the magnetic field a distance s from a long straight wire (Fig. 5.32), carrying a steady current I (the same problem we solved in Ex. 5.5, using the Biot-Savart law).
We know the direction of B is “circumferential,” circling around the wire as indicated by the right-hand rule. By symmetry, the magnitude of B is constant around an Amperian loop of radius s, centered on the wire. So Ampère’s law gives
\oint{\pmb{B}.dI}=B\oint{dl}=B2\pi s =\mu _{0}I_{enc}=\mu _{0}I,or
B=\frac{\mu _{0}I}{2\pi s}.This is the same answer we got before (Eq. 5.38), but it was obtained this time
with far less effort.
B=\frac{\mu _{0}I}{2\pi s}. (5.38)