Find the mass of a solid bounded by the cylinder r=\sin \theta, the planes z=0, \theta=0, \theta=\pi / 3, and the cone z=r, if the density is given by \rho(r, \theta, z)=4 r.
Find the mass of a solid bounded by the cylinder r=\sin \theta, the planes z=0, \theta=0, \theta=\pi / 3, and the cone z=r, if the density is given by \rho(r, \theta, z)=4 r.
We first note that the solid may be written as S=\left\{(r, \theta, z): 0 \leq \theta \leq \frac{\pi}{3}, 0 \leq r \leq \sin \theta, 0 \leq z \leq r\right\}
Then
\begin{aligned}\mu &=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta} \int_{0}^{r}(4 r) r d z d r d \theta \\&=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta}\left\{\left.4 r^{2} z\right|_{0} ^{r}\right\} d r d \theta=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta} 4 r^{3} d r d \theta \\&=\int_{0}^{\pi / 3}\left\{\left.r^{4}\right|_{0} ^{\sin \theta}\right\} d \theta=\int_{0}^{\pi / 3} \sin ^{4} \theta d \theta=\int_{0}^{\pi / 3}\left(\frac{1-\cos 2 \theta}{2}\right)^{2} d \theta \\&=\frac{1}{4} \int_{0}^{\pi / 3}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) d \theta \\&=\left.\frac{1}{4}\left(\frac{3 \theta}{2}-\sin 2 \theta+\frac{\sin 4 \theta}{8}\right)\right|_{0} ^{\pi / 3}=\frac{1}{4}\left(\frac{\pi}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{16}\right) \\&=\frac{\pi}{8}-\frac{9 \sqrt{3}}{64} .\end{aligned}