Question 5.7.1: Find the mass of a solid bounded by the cylinder r = sin θ, ...

Find the mass of a solid bounded by the cylinder r=\sin \theta, the planes z=0, \theta=0, \theta=\pi / 3, and the cone z=r, if the density is given by \rho(r, \theta, z)=4 r.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first note that the solid may be written as S=\left\{(r, \theta, z): 0 \leq \theta \leq \frac{\pi}{3}, 0 \leq r \leq \sin \theta, 0 \leq z \leq r\right\}

Then

\begin{aligned}\mu &=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta} \int_{0}^{r}(4 r)  r  d z  d r  d \theta \\&=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta}\left\{\left.4 r^{2} z\right|_{0} ^{r}\right\} d r  d \theta=\int_{0}^{\pi / 3} \int_{0}^{\sin \theta} 4 r^{3} d r  d \theta \\&=\int_{0}^{\pi / 3}\left\{\left.r^{4}\right|_{0} ^{\sin \theta}\right\} d \theta=\int_{0}^{\pi / 3} \sin ^{4} \theta  d \theta=\int_{0}^{\pi / 3}\left(\frac{1-\cos 2 \theta}{2}\right)^{2}  d \theta \\&=\frac{1}{4} \int_{0}^{\pi / 3}\left(1-2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right)  d \theta \\&=\left.\frac{1}{4}\left(\frac{3 \theta}{2}-\sin 2 \theta+\frac{\sin 4 \theta}{8}\right)\right|_{0} ^{\pi / 3}=\frac{1}{4}\left(\frac{\pi}{2}-\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{16}\right) \\&=\frac{\pi}{8}-\frac{9 \sqrt{3}}{64} .\end{aligned}

Related Answered Questions

We have already found that \mu=\frac{47}{84...
\begin{aligned}V &=\int_{0}^{1} \int_{x...