Question 6.P.9: Find the number of s bound states for a particle of mass m m...

Find the number of s bound states for a particle of mass m moving in a delta potential V(r)=-V_{0} \delta (r-a) where V_{0}>0. Discuss the existence of bound states in terms of the size of a. Find the normalized wave function of the bound state(s).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The l = 0 radial equation can be obtained from (6.57):

-\frac{\hbar ^{2} }{2M} \frac{d^{2} U_{nl} (r)}{dr^{2} } +V_{eff} U_{nl} (r)=E_{n} U_{nl} (r)                       (6.57)

 

\frac{d^{2} U_{n0} (r)}{dr^{2} }+\left[\frac{2mV_{0}}{\hbar ^{2}} \delta (r-a)-k^{2}\right] U_{n0} (r)=0,                    (6.277)

where U_{nl} (r)=U_{n0} (r)=rR_{n0} (r) and k^{2}=-2mE/\hbar ^{2}, since we are looking here at the bound states only, E < 0. The solutions of this equation are

U_{n0} (r)=\begin{cases} U_{n0_{1} } (r)=Ae^{kr}+Be^{-kr}, & 0<r<a, \\ U_{n0_{2} } (r)=Ce^{-kr}, & r>a.\end{cases}                             (6.278)

The energy eigenvalues can be obtained from the boundary conditions. As the wave function vanishes at r = 0, U_{n0} (0)=0, we have A + B = 0 or B = -A ; hence U_{n0_{1} } (r)=D\sinh kr :

U_{n0} (r)=D\sinh kr,                     0<r<a,                   (6.279)

with D = 2A. The continuity condition at r = a of U_{n0} (r), U_{n0_{1} } (a)=U_{n0_{2} } (a), leads to

D\sinh ka=Ce^{-ka}.                                                     (6.280)

To obtain the discontinuity condition for the first derivative of U_{n0} (r) at r = a, we need to integrate (6.277):

\underset{\varepsilon \rightarrow 0}{\lim } [U^{\prime }_{n 0_{2} } (a+\varepsilon )-U^{\prime }_{n0_{1} }(a-\varepsilon )]+ \frac{2mV_{0}}{\hbar ^{2}} U_{n0_{2} } (a)=0              (6.281)

or

-kCe^{-ka}-kD\cosh ka+\frac{2mV_{0}}{\hbar ^{2}}Ce^{-ka}=0.                  (6.282)

Taking Ce^{-ka}=D\sinh ka, as given by (6.280), and substituting it into (6.282), we get

-k\sinh ka-k\cosh ka+\frac{2mV_{0}}{\hbar ^{2}}\sinh ka=0;                (6.283)

hence

\gamma \coth \gamma =\frac{2mV_{0}}{\hbar ^{2}}a-\gamma ,                 (6.284)

where \gamma =ka.

The energy eigenvalues are given by the intersection of the curves f(\gamma )=\gamma \coth \gamma and g (\gamma )=2mV_{0}a/\hbar ^{2}-\gamma . As shown in Figure 6.6, if a<\hbar ^{2}/(2mV_{0}) then no bound state solution can exist, since the curves of f(\gamma ) and g (\gamma ) do not intersect. But if a>\hbar ^{2}/(2mV_{0})the curves intersect only once; hence there is one bound state. We can summarize these results as follows:

a<\frac{\hbar ^{2}}{2mV_{0}} \Longrightarrow no bound states ,                    (6.285)

 

a>\frac{\hbar ^{2}}{2mV_{0}} \Longrightarrow only one bound state.               (6.286)

The radial wave function is given by

R_{n0} (r)=\frac{1}{r} U_{n0} (r)=\begin{cases} (D/r)\sinh kr, & 0<r<a, \\ (C/r)e^{-kr}, & r>a.\end{cases}                       (6.287)

The normalization of this function yields

1=∫^{\infty }_{0} r^{2} R^{2}_{n0} dr =∫^{\infty }_{0} U^{2}_{n0} dr

 

=D^{2} ∫^{a}_{0} \sinh ^{2} kr dr +C^{2} ∫^{\infty }_{a} e^{-2kr} dr=\frac{D^{2}}{2} ∫^{a}_{0}[\cosh 2kr-1]dr+\frac{C^{2}}{2k} e^{-2ka}

 

=D^{2}\left[\frac{1}{4k}\sinh 2ka-\frac{a}{2} \right] +\frac {C^{2}}{2k}e^{-2ka} .                                                        (6.288)

From (6.280) we have Ce^{-ka}=D\sinh ka, so we can rewrite this relation as

1=D^{2}\left[\frac{1}{4k}\sinh 2ka-\frac{a}{2} \right] +\frac {D^{2}}{2k} \sinh ^{2} ka=D^{2}\left[\frac{\sinh 2ka+2\sinh ^{2}ka}{4k} -\frac{a}{2} \right];      (6.289)

hence

D=\frac{2\sqrt{k} }{\sqrt{\sinh 2ka+2\sinh ^{2}ka-2ak} } .                  (6.290)

The normalized wave function is thus given by \psi _{nlm} (r)=\psi _{n00} (r)=(1/\sqrt{4\pi } )R _{n0} (r) or

\psi _{n00} (r)=\frac{\sqrt{k} }{\sqrt{\pi \sinh 2ka+2\pi \sinh ^{2}ka-2\pi ak} }\begin{cases} (1/r)\sinh (kr), & 0<r<a, \\ (1/r)\sinh (ka)e^{-k(r-a)}, & r>a.\end{cases}   (6.291)

figure (6.6)

Related Answered Questions