Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ. Compute the gradient of your potential, and check that it yields the correct field.
Find the potential a distance s from an infinitely long straight wire that carries a uniform line charge λ. Compute the gradient of your potential, and check that it yields the correct field.
E=\frac{1}{4\pi \varepsilon _0}\frac{2\lambda }{s}\hat{s} (Prob. 2.13). In this case we cannot set the reference point at ∞, since the charge itself extends to ∞. Let’s set it at s = a. Then
V (s) = −\int_{a}^{s}{}\left(\frac{1}{4\pi \varepsilon _0}\frac{2\lambda }{\bar{s} } \right) d\bar{s}=-\frac{1}{4\pi \varepsilon _0}2\lambda \ln \left(\frac{s}{a} \right) .
(In this form it is clear why a = ∞ would be no good—likewise the other “natural” point, a = 0.)
∇V=-\frac{1}{4\pi \varepsilon _0}2\lambda \frac{\partial}{\partial s} \left(\ln \left(\frac{s}{a} \right) \right)\hat{s}=-\frac{1}{4\pi \varepsilon _0}2\lambda \frac{1}{s}\hat{s} =-E .