Find the potential distribution in Example 6.5 if V_{o} is not constant but
(a) V_{o}=10\sin 3\pi x/b,y=a,0\leq x\leq b
(b) V_{o}=2\sin\frac{\pi x}{b}+\frac{1}{10}\sin\frac{5\pi x}{b},y=a,0\leq x\leq b
Find the potential distribution in Example 6.5 if V_{o} is not constant but
(a) V_{o}=10\sin 3\pi x/b,y=a,0\leq x\leq b
(b) V_{o}=2\sin\frac{\pi x}{b}+\frac{1}{10}\sin\frac{5\pi x}{b},y=a,0\leq x\leq b
(a) In Example 6.5, every step before eq. (6.5.19) remains the same; that is, the solution is of the form
V(x,y)=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi y}{b} (6.6.1)
in accordance with eq. (6.5.18).
V(x,y)=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi y}{b}
But instead of eq. (6.5.19)
V(x,y=a)=V_{o}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}
we now have
V(y=a)=V_{o}=10\sin\frac{3\pi x}{b}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}
By equating the coefficients of the sine terms on both sides, we obtain
c_{n}=0, n\neq 3
For n=3
10=c_{3}\sinh\frac{3\pi a}{b}
or
c_{3}=\frac{10}{\sinh\frac{3\pi a}{b}}
Thus the solution in eq. (6.6.1) becomes
V(x,y)=10\sin\frac{3\pi x}{b}\frac{\sinh\frac{3\pi y}{b}}{\sinh\frac{3\pi a}{b}}
(b) Similarly, instead of eq. (6.5.19), we have
V_{o}=V(y=a)
or
2\sin\frac{\pi x}{b}+\frac{1}{10}\sin\frac{5\pi x}{b}=\sum\limits_{n=1}^{\infty}c_{n}\sin\frac{n\pi x}{b}\sinh\frac{n\pi a}{b}
Equating the coefficient of the sine terms:
c_{n}=0, n\neq 1,5
For n=1
2=c_{1}\sinh\frac{\pi a}{b} or c_{1}=\frac{2}{\sinh\frac{\pi a}{b}}
For n=5
\frac{1}{10}=c_{5}\sinh\frac{5\pi a}{b} or c_{5}=\frac{1}{10\sinh\frac{5\pi a}{b}}
Hence
V(x,y)=\frac{2\sin\frac{\pi x}{b}\sinh\frac{\pi y}{b}}{\sinh\frac{\pi a}{b}}+\frac{\sin\frac{5\pi x}{b}\sinh\frac{5\pi y}{b}}{10\sinh\frac{5\pi a}{b}}