Question 2.8: Find the potential of a uniformly charged spherical shell of...

Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This is the same problem we solved in Ex. 2.7, but this time let’s do it using Eq. 2.30:

V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\lambda (\acute{r})}{\varkappa }d\acute{l} } and \quad V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\sigma (\acute{r})}{\varkappa }d\acute{a} }        (2.30)

V=\frac{1}{4\pi \epsilon _{0}}\int{\frac{\sigma }{\varkappa }d\acute{a} }

We might as well set the point P on the z axis and use the law of cosines to express η :

η^{2}=R^{2}+z^{2}-2Rz\cos \acute{\theta }.

An element of surface area on the sphere is:R^{2}\sin \acute{\theta }d \acute{\theta }d \acute{\phi },   so

4\pi \epsilon _{0}V(z)=\sigma \int{\frac{R^{2}\sin \acute{\theta }d \acute{\theta }d \acute{\phi }}{\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } }

 

=2\pi R^{2}\sigma \int_{0}^{\pi } {\frac{\sin \acute{\theta }}{\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } } d\acute{\theta }

 

=2\pi R^{2}\sigma \left({\frac{1}{Rz} {\sqrt{R^{2}+z^{2}-2Rz\cos \acute{\theta }} } }\right) \mid ^{\pi }_{0}

 

=\frac{2\pi R\sigma}{z} \left({{\sqrt{R^{2}+z^{2}-2Rz} }-{\sqrt{R^{2}+z^{2}-2Rz} } }\right)

 

=\frac{2\pi R\sigma}{z}\left[\sqrt{\left(R+z\right)^{2} }-\sqrt{\left(R-z\right)^{2} } \right]

 

At this stage, we must be very careful to take the positive root. For points outside
the sphere, z is greater than R, and hence \sqrt{\left(R-z\right)^{2} }=z-R ; for points inside the sphere,\sqrt{\left(R-z\right)^{2} }=R-z . Thus,

V(z)=\frac{R\sigma }{2\epsilon _{0}z}\left[\left(R+z\right)-\left(z-R\right) \right]=\frac{R^{2}\sigma }{\epsilon _{0}z},         outside;

V(z)=\frac{R\sigma }{2\epsilon _{0}z}\left[\left(R+z\right)-\left(R-z\right) \right]=\frac{R\sigma }{\epsilon _{0}},                     inside.

In terms of r and the total charge on the shell,q=4\pi R^{2}\sigma

V(r)=\begin{cases}\frac{1}{4\pi \epsilon _{0}}\frac{q}{r} & (r\geq R) \quad \\\frac{1}{4\pi \epsilon _{0}}\frac{q}{R} & (r\leq R)\end{cases}  

Of course, in this particular case, it was easier to get V by using Eq. 2.21 than Eq. 2.30, because Gauss’s law gave us E with so little effort. But if you compare Ex. 2.8 with Prob. 2.7, you will appreciate the power of the potential formulation.

V(r)\equiv -\int_{\omicron }^{r}{E.dI}        (2.21)

 

Related Answered Questions