Question 1.5.5: Find the projection of u = [-3 1] onto the unit vector v = [...

Find the projection of \vec{u} = \left [ \begin{matrix} -3 \\ 1 \end{matrix} \right ] onto the unit vector \vec{v} = \left [ \begin{matrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{matrix} \right ].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have

proj_{\vec{v} }(\vec{u} ) = (\vec{v}\cdot \vec{u} )\vec{v}

= \left(\frac{-3}{\sqrt{2} } + \frac{1}{\sqrt{2} } \right) \left [ \begin{matrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{matrix} \right ]

= \frac{-2}{\sqrt{2} } \left [ \begin{matrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{matrix} \right ]

= \left [ \begin{matrix} -1 \\ -1 \end{matrix} \right ]

1.5.5

Related Answered Questions