Find the total current through R_{3} in Figure 8-26.
Find the total current through R_{3} in Figure 8-26.
Step 1: Find the current through R_{3} due to source V_{S1} by replacing source V_{S2} with a short, as shown in Figure 8-27.
Looking from V_{S1},
R_{T(S1)}= R_{1}+ \frac{R_{2}R_{3}}{R_{2}+ R_{3}}= 1.0 \ k\Omega + \frac{(1.0 \ k\Omega)(2.2 \ k\Omega)}{3.2 \ k\Omega} = 1.69 \ k\OmegaI_{T(S1)}= \frac{V_{S1}}{R_{T(S1)}} = \frac{20 \ V}{1.69 \ k\Omega } = 11.8 \ mA
Now apply the current-divider formula to get the current through R_{3}, due to source V_{S1}.
I_{3(S1)}= \left(\frac{R_{2}}{R_{2}+ R_{3}} \right) I_{T(S1)} = \left(\frac{1.0 \ k\Omega }{3.2 \ k\Omega } \right) 11.8 \ mA = 3.69 \ mANotice that this current is upward through R_{3}.
Step 2: Find I_{3} due to source V_{S2} by replacing source V_{S1} with a short, as shown in Figure 8-28.
Looking from V_{S2}.
R_{T(S2)}= R_{2}+ \frac{R_{1}R_{3}}{R_{1}+ R_{3}}= 1.0 \ k\Omega + \frac{(1.0 \ k\Omega)(2.2 \ k\Omega)}{3.2 \ k\Omega} = 1.69 \ k\OmegaI_{T(S2)}= \frac{V_{S2}}{R_{T(S2)}} = \frac{15 \ V}{1.69 \ k\Omega } = 8.88 \ mA
Now apply the current-divider formula to find the current through R_{3} , due to source V_{S2}.
I_{3(S2)}= \left(\frac{R_{1}}{R_{1}+ R_{3}} \right) I_{T(S2)} = \left(\frac{1.0 \ k\Omega }{3.2 \ k\Omega } \right) 88.8 \ mA = 2.78 \ mANotice that this current is downward through R_{3}.
Step 3: Calculate the total current through R_{3},.
I_{3(tot)} = I_{3(S1)}– I_{3(S2)} = 3.69 mA – 2.78 mA = 0.91 mA = 910 μA
This current is upward through R_{3}.